Home
Class 6
MATHS
people living at Mars ,instead of the us...

people living at Mars ,instead of the usual definition of derivative `Df(x)` define a new kind of derivative `Df(x)` by the formula `Df(x)=lim_(h->0) (f^2(x+h)-f^2(x))/h` where `f^x` means `[f(x)]^2.` If `f(x)=xInx` then `Df(x)|_(x=e)` has the value (a) `e` (b) `2e` (c) `4e` (d) non

Promotional Banner

Similar Questions

Explore conceptually related problems

People living at Mars,instead of the usual definition of derivative Df(x) ,define a new kind of derivative D^(*)f(x) by the formula D^(*)f(x)=lim_(h rarr0)(f^(2)(x+h)-f^(2)(x))/(h) where f^(2)(x)means[f(x)]^(2) .If f(x)=x ln x then D^(*)f(x)|_(x=e) has the value (A)e(B)2e(C)4e(D) none

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

Instead of the usual defination of derivatie Df(x), if we define a new kind of derivatie D^(**)F(x) by the formula D^(**)(x)=lim_(hrarr0) (f^(2)(x+h)-f^(2)(x))/(h)." where "f^(2)(x)" means "[f(x)]^(2) and if f(x)=x log x, then D^(**)f(x)|_(x=e) has the value

Let the derivative of f(x) be defined as D*f(x)=lim_(h rarr0)(f^(2)(x+h)-f^(2)(x))/(h) where f^(2)(x)=(f(x))^(2) if u=f(x),v=g(x), then the value of D*{u.v} is

Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hrarr0)(f^(2)x+h-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)(u.v) is

Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hrarr0)(f^(2)(x+h)-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)(u.v) is