Home
Class 7
MATHS
2^(3^(2))=...

`2^(3^(2))=` ____

A

64

B

32

C

256

D

512

Text Solution

Verified by Experts

The correct Answer is:
D

`2^(2^(2))=2^9=512`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Level -2|22 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Level -3|20 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Essay Type quesitons|15 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Test-2|12 Videos
  • MENSURATION

    PEARSON IIT JEE FOUNDATION|Exercise ASSESSMENT TESTS (Test - 1) |23 Videos

Similar Questions

Explore conceptually related problems

Simplify (x^((2)/(3))-y^((2)/(3)))(x^((4)/(3))+x^((2)/(3))y^((2)/(3))+y^((4)/(3))) The following steps are involved in solving the above problem. Arrange them in sequenctial order. (A) therefore (x^((2)/(3))-y^((2)/(3)))[(x^((2)/(3)))^(2)+x^((2)/(3))y^((2)/(3))+(y^((2)/(3)))^(2)] =(x^((2)/(3)))^(3)-(y^((2)/(3)))^(3) (B) Given expression can be written as (x^((2)/(3))-y^((2)/(3)))[(x^((2)/(3)))^(2)+x^((2)/(3))y^((2)/(3))+(y^((2)/(3)))^(2)] (C ) We have (a-b)(a^(2)+ab+b^(2))=a^(3)-b^(3) . (D) implies x^((2)/(3)xx3)-y^((2)/(3)xx3)=x^(2)-y^(2) .

Multiply the (3)/(2) p ^(2) + (2)/(3) q ^(2), (2p ^(2) - 3q ^(2))

Knowledge Check

  • What will be factors of (a^(2)-b^(2))^(3) + (b^(2) -c^(2))^(3) + (c^(2) - a^(2))^(3)

    A
    `(a+b) (a-b)`
    B
    `(a+b) (a+b)`
    C
    `(a-c) (a-c)`
    D
    `(b-c) (b-c)`
  • Value of (3+2sqrt(2))^(-3)+(3-2sqrt(2))^(-3) का मान है (3+2sqrt(2))^(-3)+(3-2sqrt(2))^(-3)

    A
    189
    B
    180
    C
    108
    D
    198
  • Similar Questions

    Explore conceptually related problems

    Write the result after applyin componendo and dividendo to 3a^(2)+2b^(2):3a^(2)-2b^(2): :3c^(2)+2d^(2):3c^(2)-2d^(2) .

    Write the result after applying componendo and dividendo to 3a^(2)+2b^(2):3a^(2)-2b^(2)::3c^(2)+2d^(2):3c^(2)-2d^(2) .

    ((2+sqrt(3))/(sqrt(2)+sqrt(2+sqrt(3)))+(2-sqrt(3))/(sqrt(2)+sqrt(2-sqrt(3))))^(2)=

    A=(3sqrt(2)-2)/(3sqrt(2)+2),B=(3sqrt(2)+2)/(3sqrt(2)-2), then A+B

    Factorize : (a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3)

    if a+b+c = 0, then ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) is equal to: यदि a+b+c = 0 है, तो ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) बराबर है :