Home
Class 11
MATHS
Find the (a) union (b) intersection of e...

Find the (a) union (b) intersection of each of the following pairs of sets:
(i) `A={x:x inZ^(+)andx^(2)gt7},B={1,2,3}`
(ii) `A={x:x inZ^(+)},B= x inZandx lt0}`
(iii) `A={x:x inNand4 ltx lt9}`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the problem step by step for each pair of sets. ### (i) Given Sets: - \( A = \{ x : x \in \mathbb{Z}^+ \text{ and } x^2 > 7 \} \) - \( B = \{ 1, 2, 3 \} \) **Step 1: Determine the elements of set A.** - \( x^2 > 7 \) implies \( x > \sqrt{7} \). - Since \( \sqrt{7} \approx 2.645 \), the smallest integer \( x \) can take is 3. - Therefore, \( A = \{ 3, 4, 5, 6, \ldots \} \) (all positive integers greater than or equal to 3). **Step 2: Identify the elements of set B.** - \( B = \{ 1, 2, 3 \} \). **Step 3: Find the intersection \( A \cap B \).** - The common elements between \( A \) and \( B \) are \( \{ 3 \} \). - Thus, \( A \cap B = \{ 3 \} \). **Step 4: Find the union \( A \cup B \).** - The union combines all distinct elements from both sets. - \( A \cup B = \{ 1, 2, 3, 4, 5, 6, \ldots \} \). - This can be expressed as \( A \cup B = \{ x : x \in \mathbb{Z}^+ \} \) (all positive integers). ### (ii) Given Sets: - \( A = \{ x : x \in \mathbb{Z}^+ \} \) - \( B = \{ x : x \in \mathbb{Z} \text{ and } x < 0 \} \) **Step 1: Identify the elements of set A.** - \( A = \{ 1, 2, 3, 4, 5, \ldots \} \) (all positive integers). **Step 2: Identify the elements of set B.** - \( B = \{ \ldots, -3, -2, -1 \} \) (all negative integers). **Step 3: Find the intersection \( A \cap B \).** - There are no common elements between positive integers and negative integers. - Thus, \( A \cap B = \emptyset \) (the empty set). **Step 4: Find the union \( A \cup B \).** - The union combines all distinct elements from both sets. - \( A \cup B = \{ \ldots, -3, -2, -1, 1, 2, 3, 4, \ldots \} \). - This can be expressed as \( A \cup B = \{ x : x \in \mathbb{Z} \text{ and } x \neq 0 \} \) (all integers except zero). ### (iii) Given Sets: - \( A = \{ x : x \in \mathbb{N} \text{ and } 4 < x < 9 \} \) - \( B = \{ x : x \in \mathbb{N} \} \) **Step 1: Identify the elements of set A.** - The natural numbers between 4 and 9 are \( 5, 6, 7, 8 \). - Thus, \( A = \{ 5, 6, 7, 8 \} \). **Step 2: Identify the elements of set B.** - \( B = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots \} \) (all natural numbers). **Step 3: Find the intersection \( A \cap B \).** - The common elements between \( A \) and \( B \) are \( \{ 5, 6, 7, 8 \} \). - Thus, \( A \cap B = \{ 5, 6, 7, 8 \} \). **Step 4: Find the union \( A \cup B \).** - The union combines all distinct elements from both sets. - \( A \cup B = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots \} \). - This can be expressed as \( A \cup B = \{ x : x \in \mathbb{N} \} \) (all natural numbers). ### Summary of Results: 1. (i) \( A \cap B = \{ 3 \} \), \( A \cup B = \{ x : x \in \mathbb{Z}^+ \} \) 2. (ii) \( A \cap B = \emptyset \), \( A \cup B = \{ x : x \in \mathbb{Z} \text{ and } x \neq 0 \} \) 3. (iii) \( A \cap B = \{ 5, 6, 7, 8 \} \), \( A \cup B = \{ x : x \in \mathbb{N} \} \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (e ) (Short Answer Type Questions)|7 Videos
  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (e ) (Long Answer Type Questions - I)|13 Videos
  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (c ) (Short Answer Type Questions)|13 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise Chapter Test|7 Videos