Home
Class 12
MATHS
Find the value the following : cos...

Find the value the following :
` cos^(-1) (cos . (13pi)/6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos^{-1} \left( \cos \left( \frac{13\pi}{6} \right) \right) \), we will follow these steps: ### Step 1: Simplify the angle First, we need to simplify the angle \( \frac{13\pi}{6} \). We can do this by finding an equivalent angle within the range of \( [0, 2\pi] \). \[ \frac{13\pi}{6} - 2\pi = \frac{13\pi}{6} - \frac{12\pi}{6} = \frac{\pi}{6} \] So, \( \frac{13\pi}{6} \) is equivalent to \( \frac{\pi}{6} \) in the range of \( [0, 2\pi] \). ### Step 2: Evaluate the cosine Now, we can evaluate \( \cos \left( \frac{13\pi}{6} \right) \): \[ \cos \left( \frac{13\pi}{6} \right) = \cos \left( \frac{\pi}{6} \right) \] From trigonometric values, we know: \[ \cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2} \] ### Step 3: Apply the inverse cosine function Next, we need to find \( \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \). The inverse cosine function gives us the angle whose cosine is \( \frac{\sqrt{3}}{2} \). The angle in the range \( [0, \pi] \) that corresponds to \( \frac{\sqrt{3}}{2} \) is: \[ \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) = \frac{\pi}{6} \] ### Final Answer Thus, the value of \( \cos^{-1} \left( \cos \left( \frac{13\pi}{6} \right) \right) \) is: \[ \frac{\pi}{6} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Exercise|10 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 2.2)|21 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of the following cos^(-1) (cos 10)

Find the value of the following: cos^(-1)(cos(13 pi)/(6))

Find the principal values of the following cos^(-1) (cos. (13pi)/6)

cos ^ (- 1) ((cos (13 pi)) / (6))

Evaluate the following: cos^(-1)((cos(7 pi))/(6))

Evaluate each of the following cos^(-1) (cos""(5pi)/(4))

Evaluate each of the following: cos^(-1)((cos(13 pi))/(6))( ii) cos^(-1)(cos3)( iii) cos^(-1)(cos4)

Find the principal values of the following : (i) sin^(-1)(sin.(5pi)/(3)) (ii) cos^(-1)cos((4pi)/(3)) (iii) cos [(pi)/(3) + cos^(-1) (-(1)/(2))]

Find the value of : cos^(-1)(cos 13)

Find the principal value of each of the following :cos^(-1)((sin(4 pi))/(3))( ii) cos^(-1)((tan(3 pi))/(4))