Home
Class 12
MATHS
Is tan^(-1) (sqrt((1-x^(2))/(1+x^(2))) )...

Is `tan^(-1) (sqrt((1-x^(2))/(1+x^(2))) ) = 1/2 cos^(-1) x ` true ?

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the equation \( \tan^{-1} \left( \sqrt{\frac{1-x^2}{1+x^2}} \right) = \frac{1}{2} \cos^{-1} x \) is true, we will analyze both sides step by step. ### Step 1: Understanding the left side We start with the left side of the equation: \[ y = \tan^{-1} \left( \sqrt{\frac{1-x^2}{1+x^2}} \right) \] This expression involves the inverse tangent function. ### Step 2: Simplifying the expression We can use the identity for tangent: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Here, we can express \( \sqrt{\frac{1-x^2}{1+x^2}} \) in terms of sine and cosine. We know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Let \( x = \cos \theta \). Then: \[ 1 - x^2 = \sin^2 \theta \quad \text{and} \quad 1 + x^2 = 1 + \cos^2 \theta = 1 + \cos^2 \theta \] Thus, we can rewrite: \[ \sqrt{\frac{1-x^2}{1+x^2}} = \sqrt{\frac{\sin^2 \theta}{1 + \cos^2 \theta}} = \frac{\sin \theta}{\sqrt{1 + \cos^2 \theta}} \] ### Step 3: Using the half-angle identity Using the half-angle identities, we know: \[ \tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta} \] We can relate this to our expression: \[ \tan^{-1} \left( \frac{\sin \theta}{\sqrt{1 + \cos^2 \theta}} \right) \] ### Step 4: Analyzing the right side Now we analyze the right side: \[ \frac{1}{2} \cos^{-1} x \] Using the substitution \( x = \cos \theta \), we have: \[ \cos^{-1} x = \theta \implies \frac{1}{2} \cos^{-1} x = \frac{\theta}{2} \] ### Step 5: Equating both sides Now we equate both sides: \[ \tan^{-1} \left( \sqrt{\frac{1-x^2}{1+x^2}} \right) = \frac{\theta}{2} \] From the previous steps, we can see that: \[ \tan^{-1} \left( \tan \frac{\theta}{2} \right) = \frac{\theta}{2} \] This indicates that both sides are equal under the condition that \( \theta \) is in the appropriate range. ### Conclusion Thus, we conclude that: \[ \tan^{-1} \left( \sqrt{\frac{1-x^2}{1+x^2}} \right) = \frac{1}{2} \cos^{-1} x \] is indeed **true**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise COMPLETITION FILE (Questions from JEE Main)|7 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

tan^(-1)(sqrt((a-x)/(a+x)))=(1)/(2)cos^(-1)((x)/(a))

Knowledge Check

  • Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.cos ^(-1) sqrt((1+sqrt( 1+x^(2)))/( 2sqrt(1+x^(2)))) is

    A
    1
    B
    -1
    C
    2
    D
    -2
  • Similar Questions

    Explore conceptually related problems

    Differentiate tan^(-1)sqrt((1-x^(2))/(1+x^(2))) with respect to cos^(-1)x^(2).

    Prove that sin ^ (- 1) x + cos ^ (- 1) y = (tan ^ (- 1) (xy + sqrt ((1-x ^ (2)) (1-y ^ (2)))) ) / (y sqrt (1-x ^ (2)) - x sqrt (1-y ^ (2)))

    If x in((1)/(sqrt(2)),1), differentiate tan^(-1)((sqrt(1-x^(2)))/(x)) with respect to cos^(-1)(2x sqrt(1-x^(2)))

    Differentiate tan^(-1)((sqrt(1-x^(2)))/(x)) wrt cos^(-1)(2x sqrt(1-x^(2))) if x varepsilon((1)/(sqrt(2)),1)

    Differential coefficient tan^(-1)((sqrt(1-x^(2)-1))/(x)) with respect to cos^(-1)sqrt((1+sqrt(1+x^(2)))/(2sqrt(1-x^(2))))

    (1) / (2) cos ^ (- 1) x = sin ^ (- 1) sqrt ((1-x) / (2)) = cos ^ (- 1) sqrt ((1 + x) / (2 )) = (tan ^ (- 1) (sqrt (1-x ^ (2)))) / (1 + x)

    Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)