Home
Class 12
MATHS
Solve the following system of equations ...

Solve the following system of equations by Cramer's Rule :
`x+3y=4`, `y+3z=7`, `4x+z=6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using Cramer's Rule, we will follow these steps: Given equations: 1. \( x + 3y = 4 \) (Equation 1) 2. \( y + 3z = 7 \) (Equation 2) 3. \( 4x + z = 6 \) (Equation 3) ### Step 1: Write the system in matrix form We can express the system of equations in the form \( AX = B \), where: - \( A \) is the coefficient matrix, - \( X \) is the column matrix of variables, - \( B \) is the column matrix of constants. From the equations, we can identify: \[ A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 3 \\ 4 & 0 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 4 \\ 7 \\ 6 \end{bmatrix} \] ### Step 2: Calculate the determinant of matrix \( A \) (denoted as \( \Delta \)) \[ \Delta = \begin{vmatrix} 1 & 3 & 0 \\ 0 & 1 & 3 \\ 4 & 0 & 1 \end{vmatrix} \] Calculating the determinant: \[ \Delta = 1 \cdot \begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix} - 3 \cdot \begin{vmatrix} 0 & 3 \\ 4 & 1 \end{vmatrix} + 0 \cdot \begin{vmatrix} 0 & 1 \\ 4 & 0 \end{vmatrix} \] \[ = 1 \cdot (1 \cdot 1 - 0 \cdot 3) - 3 \cdot (0 \cdot 1 - 4 \cdot 3) \] \[ = 1 - 3 \cdot (-12) = 1 + 36 = 37 \] ### Step 3: Calculate \( \Delta_x \) (determinant when replacing the first column with \( B \)) \[ \Delta_x = \begin{vmatrix} 4 & 3 & 0 \\ 7 & 1 & 3 \\ 6 & 0 & 1 \end{vmatrix} \] Calculating \( \Delta_x \): \[ \Delta_x = 4 \cdot \begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix} - 3 \cdot \begin{vmatrix} 7 & 3 \\ 6 & 1 \end{vmatrix} + 0 \cdot \begin{vmatrix} 7 & 1 \\ 6 & 0 \end{vmatrix} \] \[ = 4 \cdot (1 \cdot 1 - 0 \cdot 3) - 3 \cdot (7 \cdot 1 - 6 \cdot 3) \] \[ = 4 - 3 \cdot (7 - 18) = 4 - 3 \cdot (-11) = 4 + 33 = 37 \] ### Step 4: Calculate \( \Delta_y \) (determinant when replacing the second column with \( B \)) \[ \Delta_y = \begin{vmatrix} 1 & 4 & 0 \\ 0 & 7 & 3 \\ 4 & 6 & 1 \end{vmatrix} \] Calculating \( \Delta_y \): \[ \Delta_y = 1 \cdot \begin{vmatrix} 7 & 3 \\ 6 & 1 \end{vmatrix} - 4 \cdot \begin{vmatrix} 0 & 3 \\ 4 & 1 \end{vmatrix} + 0 \cdot \begin{vmatrix} 0 & 7 \\ 4 & 6 \end{vmatrix} \] \[ = 1 \cdot (7 \cdot 1 - 6 \cdot 3) - 4 \cdot (0 \cdot 1 - 4 \cdot 3) \] \[ = 7 - 18 - 4 \cdot (-12) = 7 - 18 + 48 = 37 \] ### Step 5: Calculate \( \Delta_z \) (determinant when replacing the third column with \( B \)) \[ \Delta_z = \begin{vmatrix} 1 & 3 & 4 \\ 0 & 1 & 7 \\ 4 & 0 & 6 \end{vmatrix} \] Calculating \( \Delta_z \): \[ \Delta_z = 1 \cdot \begin{vmatrix} 1 & 7 \\ 0 & 6 \end{vmatrix} - 3 \cdot \begin{vmatrix} 0 & 7 \\ 4 & 6 \end{vmatrix} + 4 \cdot \begin{vmatrix} 0 & 1 \\ 4 & 0 \end{vmatrix} \] \[ = 1 \cdot (1 \cdot 6 - 0 \cdot 7) - 3 \cdot (0 \cdot 6 - 4 \cdot 7) + 4 \cdot (0 \cdot 0 - 4 \cdot 1) \] \[ = 6 + 3 \cdot 28 - 16 = 6 + 84 - 16 = 74 \] ### Step 6: Solve for \( x, y, z \) Using Cramer’s Rule: \[ x = \frac{\Delta_x}{\Delta} = \frac{37}{37} = 1 \] \[ y = \frac{\Delta_y}{\Delta} = \frac{37}{37} = 1 \] \[ z = \frac{\Delta_z}{\Delta} = \frac{74}{37} = 2 \] ### Final Solution The solution to the system of equations is: \[ x = 1, \quad y = 1, \quad z = 2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(f) (SHORT ANSWER TYPE QUESTIONS)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equation by Cramer's rule. x+y=4 and 3x-2y=9

Solve the following system of equations by Cramers rule 2x-y=17 , 3x+5y=6

Solve the following system of equations by Cramer's Rule : x+y+z=-1 , x+2y+3z=-4 , x+3y+4z=-6

Solve the following system of equations by Cramer's Rule : 3x+y+z=10 , x+y+z=0 , 5x-9y=1 .

Solve the following system of linear equations by Cramers rule: x-2y=4,\ \ -3x+5y=-7

Solve the following system of linear equations by Cramers rule: x+y=5,\ \ y+z=3,\ \ x+z=4

Solve the following system of linear equations by Cramers rule: x+2y=1,\ \ \ 3x+y=4

Solve the following system of linear equations by Cramers rule: 2x+3y=10 ,\ \ \ x+6y=4

Solve the following system of linear equations by Cramers rule: 3x+a y=4,\ \ \ 2x+a y=2,\ \ a!=0

Solve the following system of linear equations by Cramers rule: x+y=1,\ \ \ x+z=-6,\ \ \ x-y-2z=3