Home
Class 12
MATHS
Find the inverse of each of the followin...

Find the inverse of each of the following :
`[{:(1,2,3),(0,2,4),(0,0,5):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{pmatrix} \), we follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 1, b = 2, c = 3 \) - \( d = 0, e = 2, f = 4 \) - \( g = 0, h = 0, i = 5 \) Calculating the determinant: \[ \text{det}(A) = 1(2 \cdot 5 - 4 \cdot 0) - 2(0 \cdot 5 - 4 \cdot 0) + 3(0 \cdot 0 - 2 \cdot 0) \] \[ = 1(10) - 2(0) + 3(0) = 10 \] ### Step 2: Check if the Determinant is Non-Zero Since \( \text{det}(A) = 10 \neq 0 \), the inverse of the matrix exists. ### Step 3: Calculate the Adjoint of Matrix A The adjoint of a matrix is the transpose of the cofactor matrix. We need to calculate the cofactors for each element of matrix \( A \). 1. **Cofactor \( A_{11} \)**: \[ A_{11} = \text{det} \begin{pmatrix} 2 & 4 \\ 0 & 5 \end{pmatrix} = (2 \cdot 5 - 4 \cdot 0) = 10 \] 2. **Cofactor \( A_{12} \)**: \[ A_{12} = -\text{det} \begin{pmatrix} 0 & 4 \\ 0 & 5 \end{pmatrix} = -(0 \cdot 5 - 4 \cdot 0) = 0 \] 3. **Cofactor \( A_{13} \)**: \[ A_{13} = \text{det} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = (0 \cdot 0 - 2 \cdot 0) = 0 \] 4. **Cofactor \( A_{21} \)**: \[ A_{21} = -\text{det} \begin{pmatrix} 2 & 4 \\ 0 & 5 \end{pmatrix} = -(2 \cdot 5 - 4 \cdot 0) = -10 \] 5. **Cofactor \( A_{22} \)**: \[ A_{22} = \text{det} \begin{pmatrix} 1 & 3 \\ 0 & 5 \end{pmatrix} = (1 \cdot 5 - 3 \cdot 0) = 5 \] 6. **Cofactor \( A_{23} \)**: \[ A_{23} = -\text{det} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = -(1 \cdot 0 - 2 \cdot 0) = 0 \] 7. **Cofactor \( A_{31} \)**: \[ A_{31} = \text{det} \begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix} = (2 \cdot 4 - 4 \cdot 2) = 0 \] 8. **Cofactor \( A_{32} \)**: \[ A_{32} = -\text{det} \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} = -(1 \cdot 4 - 3 \cdot 0) = -4 \] 9. **Cofactor \( A_{33} \)**: \[ A_{33} = \text{det} \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} = (1 \cdot 2 - 2 \cdot 0) = 2 \] Now, we can construct the cofactor matrix: \[ \text{Cofactor Matrix} = \begin{pmatrix} 10 & 0 & 0 \\ -10 & 5 & 0 \\ 0 & -4 & 2 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{Adjoint}(A) = \begin{pmatrix} 10 & -10 & 0 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{pmatrix} \] ### Step 4: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{Adjoint}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{10} \begin{pmatrix} 10 & -10 & 0 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{pmatrix} \] This simplifies to: \[ A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & \frac{1}{2} & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5} \end{pmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & \frac{1}{2} & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5} \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of each of the following : [{:(2,1,3),(4,-1,0),(-7,2,1):}]

Find the inverse of each of the following : [{:(1,0,0),(3,3,0),(5,2,-1):}]

Find the inverse of each of the following matrices : {:((1,5,2),(0,-1,2),(0,0,1)):}

Find the inverse of each of the following matrice : [{:(-1,5),(-3,2):}]

If possible using elementary row transformations, find the inverse of the following matrices. (i) [{:(2,-1,3),(-5,3,1),(-3,2,3):}] (ii) [{:(2, 3,-3),(-1,-2,2),(1,1, -1):}] (iii) [{:(2,0,-1),(5,1,0),(0,1,3):}]

Using elementary transformations, find the inverse of the following matrix [(2,-1,4),(4,0,2),(3,-2,7)]

Find the inverse of each of the matrices given below : [(0,0,-1), (2,-1,4),(-2,-4,-7)]

Find the inverse of each of the matrices given below : [(2,-1,4),(-3,0,1),(-1,1,2)]

Find the inverse of the matrix : A=[{:(0,1,2),(0,1,1),(1,0,2):}]

Find the inverse of each of the matrices given below : A=[(3,-3,4),(2,-3,4),(0,-1,1)]