Home
Class 12
MATHS
Evaluate : int (sin^2x)/(1+cosx) dx....

Evaluate : `int (sin^2x)/(1+cosx) dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{\sin^2 x}{1 + \cos x} \, dx\), we can follow these steps: ### Step 1: Rewrite \(\sin^2 x\) We know that \(\sin^2 x = 1 - \cos^2 x\). Thus, we can rewrite the integral as: \[ \int \frac{1 - \cos^2 x}{1 + \cos x} \, dx \] ### Step 2: Split the Integral Now, we can split the integral into two parts: \[ \int \frac{1}{1 + \cos x} \, dx - \int \frac{\cos^2 x}{1 + \cos x} \, dx \] ### Step 3: Simplify the First Integral For the first integral, we can use the identity \(1 + \cos x = 2 \cos^2 \left(\frac{x}{2}\right)\): \[ \int \frac{1}{1 + \cos x} \, dx = \int \frac{1}{2 \cos^2 \left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int \sec^2 \left(\frac{x}{2}\right) \, dx \] The integral of \(\sec^2 u\) is \(\tan u + C\), so: \[ \frac{1}{2} \int \sec^2 \left(\frac{x}{2}\right) \, dx = \tan \left(\frac{x}{2}\right) + C_1 \] ### Step 4: Simplify the Second Integral For the second integral, we can rewrite \(\cos^2 x\) using the identity \(\cos^2 x = \frac{1 + \cos 2x}{2}\): \[ \int \frac{\cos^2 x}{1 + \cos x} \, dx = \int \frac{\frac{1 + \cos 2x}{2}}{1 + \cos x} \, dx = \frac{1}{2} \int \frac{1 + \cos 2x}{1 + \cos x} \, dx \] This can be split into: \[ \frac{1}{2} \int \frac{1}{1 + \cos x} \, dx + \frac{1}{2} \int \frac{\cos 2x}{1 + \cos x} \, dx \] The first part is already calculated. The second part can be handled with substitution or further simplification. ### Step 5: Combine the Results Combining the results from the first and second integrals, we have: \[ \int \frac{\sin^2 x}{1 + \cos x} \, dx = \tan \left(\frac{x}{2}\right) - \left(\frac{1}{2} \tan \left(\frac{x}{2}\right) + C_2\right) + C \] This simplifies to: \[ \frac{1}{2} \tan \left(\frac{x}{2}\right) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sin^2 x}{1 + \cos x} \, dx = \frac{1}{2} \tan \left(\frac{x}{2}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) SHORT ANSWER TYPE|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(sin^(2)x)/(1+cosx)dx=

int (sin x)/((1+cosx))dx.

Evaluate : int((x-sinx)/(1-cosx))dx .

Evaluate : int sin^(-1) (cosx) dx .

Evaluate : int {(1+sinx)/(x-cosx)}dx .

Evaluate : int(sin^(2)x)/((1+cosx)^(2))dx .

int(sin x)/(1+cosx)^2dx

Evaluate : int(dx)/(1-sin^2x)

Evaluate: int(cosx-sinx)/(1+sin2x)dx

Evaluate int(cosx-cos2 x)/(1-cos x) dx

MODERN PUBLICATION-INTEGRALS-COMPETITION FILE
  1. Evaluate : int (sin^2x)/(1+cosx) dx.

    Text Solution

    |

  2. Let I=int0^1 (sinx)/sqrtx dx and J=int0^1 (cos x)/sqrtx dx. Then which...

    Text Solution

    |

  3. The value of sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx , is

    Text Solution

    |

  4. int(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, ...

    Text Solution

    |

  5. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x ...

    Text Solution

    |

  6. The value of int0^1 (8log(1+x))/(1+x^2) dxis:

    Text Solution

    |

  7. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  8. Let [] denote the greatest integet function then the value int0^1.5 x[...

    Text Solution

    |

  9. If the integral int (5 tanx)/(tanx-2) dx=x+a log |sin x-2 cosx|+c, the...

    Text Solution

    |

  10. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals

    Text Solution

    |

  11. If int f(x)dx=psi(x), then int x^5f(x^3)dx

    Text Solution

    |

  12. The intercepts on x-axis made by tangents to the curve, y=int0^x|t|...

    Text Solution

    |

  13. The integral int(1+x-1/x)e^(x+1/x)dx is equal to

    Text Solution

    |

  14. The integral int(0)^(pi)sqrt(1+4"sin"^2(x)/(2)-4"sin"(x)/(2)) dx is e...

    Text Solution

    |

  15. "The integral " int(dx)/(x^(2)(x^(4)+1)^(3//4))" equals"

    Text Solution

    |

  16. The integral int2^4(logx^2)/(logx^2+log(36-12 x+x^2)dx is equal to:...

    Text Solution

    |

  17. The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to ...

    Text Solution

    |

  18. underset (n rarr infty )(lim) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is e...

    Text Solution

    |

  19. int(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

    Text Solution

    |

  20. Let In=int tan^n x dx, (n>1). If I4+I6=a tan^5 x + bx^5 + C, Where C...

    Text Solution

    |

  21. The integral int(sin^(2)xcos^(2)x)/(sin^(5)x+cos^(3)xsin^(2)x+sin^(3...

    Text Solution

    |