Home
Class 12
MATHS
Evaluate: int sqrt(1+cos2x) dx (ii) ...

Evaluate:
`int sqrt(1+cos2x) dx`
(ii) `int sqrt(1+sin2x) dx.`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate the integrals step by step. ### Part (i): Evaluate \( \int \sqrt{1 + \cos 2x} \, dx \) 1. **Use the identity for cosine**: We know that \( \cos 2x = 2\cos^2 x - 1 \). Therefore, we can rewrite \( 1 + \cos 2x \) as: \[ 1 + \cos 2x = 1 + (2\cos^2 x - 1) = 2\cos^2 x \] 2. **Take the square root**: Now, we can take the square root: \[ \sqrt{1 + \cos 2x} = \sqrt{2\cos^2 x} = \sqrt{2} \cdot \cos x \] 3. **Set up the integral**: Substitute this back into the integral: \[ \int \sqrt{1 + \cos 2x} \, dx = \int \sqrt{2} \cdot \cos x \, dx \] 4. **Integrate**: The integral of \( \cos x \) is \( \sin x \): \[ \int \sqrt{2} \cdot \cos x \, dx = \sqrt{2} \cdot \sin x + C \] Thus, the solution for part (i) is: \[ \int \sqrt{1 + \cos 2x} \, dx = \sqrt{2} \sin x + C \] ### Part (ii): Evaluate \( \int \sqrt{1 + \sin 2x} \, dx \) 1. **Use the identity for sine**: We know that \( \sin 2x = 2\sin x \cos x \). Therefore, we can rewrite \( 1 + \sin 2x \) as: \[ 1 + \sin 2x = 1 + 2\sin x \cos x \] 2. **Recognize a perfect square**: We can express this as: \[ 1 + \sin 2x = (\sin x + \cos x)^2 \] This is because: \[ (\sin x + \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x = 1 + 2\sin x \cos x \] 3. **Take the square root**: Now, we can take the square root: \[ \sqrt{1 + \sin 2x} = \sin x + \cos x \] 4. **Set up the integral**: Substitute this back into the integral: \[ \int \sqrt{1 + \sin 2x} \, dx = \int (\sin x + \cos x) \, dx \] 5. **Integrate**: The integral of \( \sin x \) is \( -\cos x \) and the integral of \( \cos x \) is \( \sin x \): \[ \int (\sin x + \cos x) \, dx = -\cos x + \sin x + C \] Thus, the solution for part (ii) is: \[ \int \sqrt{1 + \sin 2x} \, dx = -\cos x + \sin x + C \] ### Summary of Solutions 1. \( \int \sqrt{1 + \cos 2x} \, dx = \sqrt{2} \sin x + C \) 2. \( \int \sqrt{1 + \sin 2x} \, dx = -\cos x + \sin x + C \)
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) SHORT ANSWER TYPE|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int sqrt(1-sin2x)dx

(i) int sqrt(1+cos2x) dx , (ii) intsqrt(1-cos2x)dx

Evaluate: (i) sqrt(1-cos2x)dx (ii) int sqrt(1+sin2x)dx

Evaluate: int(1)/(sqrt(1+cos2x))dx

Evaluate: (i) int sqrt((1+cos2x)/(2))dx (ii) int sqrt((1-cos2x)/(2))dx

Evaluate: int(sqrt(cos2x))/(sin x)dx

Evaluate: int(1)/(sqrt(1+sin2x))dx

Evaluate: (i) int(1)/(sqrt(1+cos2x))dx (ii) int(1)/(sqrt(1-cos x))dx

Evaluate: (i) int(1)/(sqrt(1-cos2x))dx (ii) int(1)/(sqrt(1+cos x))dx

int sin x sqrt(1-cos2x)dx

MODERN PUBLICATION-INTEGRALS-COMPETITION FILE
  1. Evaluate: int sqrt(1+cos2x) dx (ii) int sqrt(1+sin2x) dx.

    Text Solution

    |

  2. Let I=int0^1 (sinx)/sqrtx dx and J=int0^1 (cos x)/sqrtx dx. Then which...

    Text Solution

    |

  3. The value of sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx , is

    Text Solution

    |

  4. int(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, ...

    Text Solution

    |

  5. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x ...

    Text Solution

    |

  6. The value of int0^1 (8log(1+x))/(1+x^2) dxis:

    Text Solution

    |

  7. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  8. Let [] denote the greatest integet function then the value int0^1.5 x[...

    Text Solution

    |

  9. If the integral int (5 tanx)/(tanx-2) dx=x+a log |sin x-2 cosx|+c, the...

    Text Solution

    |

  10. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals

    Text Solution

    |

  11. If int f(x)dx=psi(x), then int x^5f(x^3)dx

    Text Solution

    |

  12. The intercepts on x-axis made by tangents to the curve, y=int0^x|t|...

    Text Solution

    |

  13. The integral int(1+x-1/x)e^(x+1/x)dx is equal to

    Text Solution

    |

  14. The integral int(0)^(pi)sqrt(1+4"sin"^2(x)/(2)-4"sin"(x)/(2)) dx is e...

    Text Solution

    |

  15. "The integral " int(dx)/(x^(2)(x^(4)+1)^(3//4))" equals"

    Text Solution

    |

  16. The integral int2^4(logx^2)/(logx^2+log(36-12 x+x^2)dx is equal to:...

    Text Solution

    |

  17. The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to ...

    Text Solution

    |

  18. underset (n rarr infty )(lim) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is e...

    Text Solution

    |

  19. int(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

    Text Solution

    |

  20. Let In=int tan^n x dx, (n>1). If I4+I6=a tan^5 x + bx^5 + C, Where C...

    Text Solution

    |

  21. The integral int(sin^(2)xcos^(2)x)/(sin^(5)x+cos^(3)xsin^(2)x+sin^(3...

    Text Solution

    |