Home
Class 12
MATHS
Evaluate: int sqrt(1+cos2x) dx (ii) ...

Evaluate:
`int sqrt(1+cos2x) dx`
(ii) `int sqrt(1+sin2x) dx.`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate the integrals step by step. ### Part (i): Evaluate \( \int \sqrt{1 + \cos 2x} \, dx \) 1. **Use the identity for cosine**: We know that \( \cos 2x = 2\cos^2 x - 1 \). Therefore, we can rewrite \( 1 + \cos 2x \) as: \[ 1 + \cos 2x = 1 + (2\cos^2 x - 1) = 2\cos^2 x \] 2. **Take the square root**: Now, we can take the square root: \[ \sqrt{1 + \cos 2x} = \sqrt{2\cos^2 x} = \sqrt{2} \cdot \cos x \] 3. **Set up the integral**: Substitute this back into the integral: \[ \int \sqrt{1 + \cos 2x} \, dx = \int \sqrt{2} \cdot \cos x \, dx \] 4. **Integrate**: The integral of \( \cos x \) is \( \sin x \): \[ \int \sqrt{2} \cdot \cos x \, dx = \sqrt{2} \cdot \sin x + C \] Thus, the solution for part (i) is: \[ \int \sqrt{1 + \cos 2x} \, dx = \sqrt{2} \sin x + C \] ### Part (ii): Evaluate \( \int \sqrt{1 + \sin 2x} \, dx \) 1. **Use the identity for sine**: We know that \( \sin 2x = 2\sin x \cos x \). Therefore, we can rewrite \( 1 + \sin 2x \) as: \[ 1 + \sin 2x = 1 + 2\sin x \cos x \] 2. **Recognize a perfect square**: We can express this as: \[ 1 + \sin 2x = (\sin x + \cos x)^2 \] This is because: \[ (\sin x + \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x = 1 + 2\sin x \cos x \] 3. **Take the square root**: Now, we can take the square root: \[ \sqrt{1 + \sin 2x} = \sin x + \cos x \] 4. **Set up the integral**: Substitute this back into the integral: \[ \int \sqrt{1 + \sin 2x} \, dx = \int (\sin x + \cos x) \, dx \] 5. **Integrate**: The integral of \( \sin x \) is \( -\cos x \) and the integral of \( \cos x \) is \( \sin x \): \[ \int (\sin x + \cos x) \, dx = -\cos x + \sin x + C \] Thus, the solution for part (ii) is: \[ \int \sqrt{1 + \sin 2x} \, dx = -\cos x + \sin x + C \] ### Summary of Solutions 1. \( \int \sqrt{1 + \cos 2x} \, dx = \sqrt{2} \sin x + C \) 2. \( \int \sqrt{1 + \sin 2x} \, dx = -\cos x + \sin x + C \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) SHORT ANSWER TYPE|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int sqrt(1-sin2x)dx

(i) int sqrt(1+cos2x) dx , (ii) intsqrt(1-cos2x)dx

Evaluate: (i) sqrt(1-cos2x)dx (ii) int sqrt(1+sin2x)dx

Evaluate: int(1)/(sqrt(1+cos2x))dx

Evaluate: (i) int sqrt((1+cos2x)/(2))dx (ii) int sqrt((1-cos2x)/(2))dx

Evaluate: int(sqrt(cos2x))/(sin x)dx

Evaluate: int(1)/(sqrt(1+sin2x))dx

Evaluate: (i) int(1)/(sqrt(1+cos2x))dx (ii) int(1)/(sqrt(1-cos x))dx

Evaluate: (i) int(1)/(sqrt(1-cos2x))dx (ii) int(1)/(sqrt(1+cos x))dx

int sin x sqrt(1-cos2x)dx