Home
Class 12
MATHS
int e^x (tan x+1) sec x dx...

`int e^x (tan x+1) sec x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x (\tan x + 1) \sec x \, dx \), we can use the method of integration by parts or recognize it as a form that can be simplified using a known formula. ### Step-by-Step Solution: 1. **Identify the components**: We can rewrite the integral as: \[ \int e^x \sec x (\tan x + 1) \, dx \] This can be separated into two parts: \[ \int e^x \sec x \tan x \, dx + \int e^x \sec x \, dx \] 2. **Use the integration formula**: We know that: \[ \int e^x f(x) \, dx = e^x f(x) - \int e^x f'(x) \, dx \] Here, we can let \( f(x) = \sec x \). 3. **Calculate \( f'(x) \)**: The derivative of \( f(x) = \sec x \) is: \[ f'(x) = \sec x \tan x \] 4. **Apply the integration formula**: Using the formula, we can compute: \[ \int e^x \sec x \, dx = e^x \sec x - \int e^x \sec x \tan x \, dx \] 5. **Combine the integrals**: Now, substituting back into our original integral: \[ \int e^x \sec x (\tan x + 1) \, dx = \int e^x \sec x \tan x \, dx + \int e^x \sec x \, dx \] We can substitute the expression we found for \( \int e^x \sec x \, dx \): \[ = \int e^x \sec x \tan x \, dx + \left( e^x \sec x - \int e^x \sec x \tan x \, dx \right) \] 6. **Simplify**: Let \( I = \int e^x \sec x \tan x \, dx \): \[ I + (e^x \sec x - I) = e^x \sec x \] Thus, we have: \[ 2I = e^x \sec x \implies I = \frac{1}{2} e^x \sec x \] 7. **Final result**: Therefore, the integral evaluates to: \[ \int e^x (\tan x + 1) \sec x \, dx = \frac{1}{2} e^x \sec x + C \] ### Final Answer: \[ \int e^x (\tan x + 1) \sec x \, dx = \frac{1}{2} e^x \sec x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) LONG ANSWER TYPE QUESTION (I)|8 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7 (h) SHORT ANSWER TYPE QUESTION|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f) FAQ|5 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int e^(-x)(1-tan x)sec xdx=

Evaluate: int e^(x)(tan x+log sec x)dx

Knowledge Check

  • int e^(-x) (1 - tan x) sec x dx (Where C is constant of integration)

    A
    `e^(-x) sec x + C`
    B
    `e^(-x) tan x + C`
    C
    `-e^(-x) tan x + C`
    D
    `-e^(-x) sec x +C`
  • int e ^( sec x) tan x sec x dx is equal to

    A
    `e ^( tan x) + C`
    B
    `e ^( sec x) + C`
    C
    `e ^( secx) sec x + C`
    D
    `e ^( sec x ) tan x + C`
  • int e^(tan x) (sec^(2) x + sec^(3) x sin x ) dx is equal to

    A
    `sec x e^(tanx ) + c`
    B
    `tan x e^(tan x) + c`
    C
    `e^(tan x ) + tan x + c`
    D
    `(1 + tan x ) e^(tan x) + c`
  • Similar Questions

    Explore conceptually related problems

    int e^(tan x)(sec x-sin x)dx se qu a lto

    int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx

    int e^(x)(tan x+sec^(2)x)*dx

    int e^x sec e^x dx

    int_(0)^(pi)e^(x)(tan x + sec^(2)x) dx = ______.