Home
Class 12
MATHS
int sqrt(x^2+1)/x dx...

`int sqrt(x^2+1)/x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sqrt{x^2 + 1}}{x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \sqrt{x^2 + 1} \). Then, squaring both sides gives us: \[ t^2 = x^2 + 1 \implies x^2 = t^2 - 1 \implies x = \sqrt{t^2 - 1} \] ### Step 2: Differentiate to find \( dx \) Differentiating both sides with respect to \( t \): \[ dx = \frac{d}{dt}(\sqrt{t^2 - 1}) = \frac{1}{2\sqrt{t^2 - 1}} \cdot 2t \, dt = \frac{t}{\sqrt{t^2 - 1}} \, dt \] ### Step 3: Substitute in the integral Now substitute \( t \) and \( dx \) into the integral: \[ \int \frac{\sqrt{x^2 + 1}}{x} \, dx = \int \frac{t}{\sqrt{t^2 - 1}} \cdot \frac{t}{\sqrt{t^2 - 1}} \, dt = \int \frac{t^2}{t^2 - 1} \, dt \] ### Step 4: Simplify the integrand We can rewrite the integrand: \[ \frac{t^2}{t^2 - 1} = 1 + \frac{1}{t^2 - 1} \] Thus, the integral becomes: \[ \int \left( 1 + \frac{1}{t^2 - 1} \right) dt = \int 1 \, dt + \int \frac{1}{t^2 - 1} \, dt \] ### Step 5: Integrate each part 1. The integral of \( 1 \) is: \[ \int 1 \, dt = t \] 2. For the integral \( \int \frac{1}{t^2 - 1} \, dt \), we can use the formula: \[ \int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C \] Here, \( a = 1 \): \[ \int \frac{1}{t^2 - 1} \, dt = \frac{1}{2} \log \left| \frac{t - 1}{t + 1} \right| \] ### Step 6: Combine results Combining both parts, we have: \[ \int \frac{\sqrt{x^2 + 1}}{x} \, dx = t + \frac{1}{2} \log \left| \frac{t - 1}{t + 1} \right| + C \] ### Step 7: Substitute back for \( t \) Recall that \( t = \sqrt{x^2 + 1} \): \[ \int \frac{\sqrt{x^2 + 1}}{x} \, dx = \sqrt{x^2 + 1} + \frac{1}{2} \log \left| \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 1} + 1} \right| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sqrt{x^2 + 1}}{x} \, dx = \sqrt{x^2 + 1} + \frac{1}{2} \log \left| \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 1} + 1} \right| + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m)FAQ|9 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) LONG ANSWER TYPE QUESTION (I)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int sqrt(x^2-2x+1)dx

int sqrt(x^(2)+x+1)dx

Evaluate: int sqrt(x^(2)+x+1)dx

int sqrt(x^(2)+2x-1)dx

Evaluate int x/sqrt(2x-1) dx

int x sqrt(2x+1)dx

int x sqrt(1+x^(2))dx

int x^(2)sqrt(x-1)dx

" 4."int x sqrt(2x+1)dx

int sqrt((x-1)/(2-x))dx