Home
Class 12
MATHS
Evaluate: int0^(pi//2) e^x (sinx-cos x) ...

Evaluate: `int_0^(pi//2) e^x (sinx-cos x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^{\frac{\pi}{2}} e^x (\sin x - \cos x) \, dx, \] we can split this integral into two parts: \[ I = \int_0^{\frac{\pi}{2}} e^x \sin x \, dx - \int_0^{\frac{\pi}{2}} e^x \cos x \, dx. \] Let's denote: \[ I_1 = \int_0^{\frac{\pi}{2}} e^x \sin x \, dx, \] \[ I_2 = \int_0^{\frac{\pi}{2}} e^x \cos x \, dx. \] Thus, we have: \[ I = I_1 - I_2. \] ### Step 1: Evaluate \( I_1 \) To evaluate \( I_1 \), we will use integration by parts. Let: - \( u = \sin x \) → \( du = \cos x \, dx \) - \( dv = e^x \, dx \) → \( v = e^x \) Using integration by parts: \[ I_1 = \left[ e^x \sin x \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} e^x \cos x \, dx. \] Calculating the boundary term: \[ \left[ e^x \sin x \right]_0^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} \sin\left(\frac{\pi}{2}\right) - e^0 \sin(0) = e^{\frac{\pi}{2}} \cdot 1 - 1 \cdot 0 = e^{\frac{\pi}{2}}. \] Thus, we have: \[ I_1 = e^{\frac{\pi}{2}} - I_2. \] ### Step 2: Evaluate \( I_2 \) Now, we can evaluate \( I_2 \) using integration by parts as well. Let: - \( u = \cos x \) → \( du = -\sin x \, dx \) - \( dv = e^x \, dx \) → \( v = e^x \) Using integration by parts: \[ I_2 = \left[ e^x \cos x \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} e^x \sin x \, dx. \] Calculating the boundary term: \[ \left[ e^x \cos x \right]_0^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} \cos\left(\frac{\pi}{2}\right) - e^0 \cos(0) = e^{\frac{\pi}{2}} \cdot 0 - 1 \cdot 1 = -1. \] Thus, we have: \[ I_2 = -1 + I_1. \] ### Step 3: Substitute back Now we can substitute \( I_2 \) back into the equation for \( I_1 \): \[ I_1 = e^{\frac{\pi}{2}} - (-1 + I_1). \] This simplifies to: \[ I_1 = e^{\frac{\pi}{2}} + 1 - I_1. \] Adding \( I_1 \) to both sides gives: \[ 2I_1 = e^{\frac{\pi}{2}} + 1. \] Thus, \[ I_1 = \frac{e^{\frac{\pi}{2}} + 1}{2}. \] ### Step 4: Find \( I_2 \) Now substituting \( I_1 \) back into the equation for \( I_2 \): \[ I_2 = -1 + \frac{e^{\frac{\pi}{2}} + 1}{2} = \frac{e^{\frac{\pi}{2}} + 1 - 2}{2} = \frac{e^{\frac{\pi}{2}} - 1}{2}. \] ### Step 5: Final Calculation of \( I \) Now we can find \( I \): \[ I = I_1 - I_2 = \left( \frac{e^{\frac{\pi}{2}} + 1}{2} \right) - \left( \frac{e^{\frac{\pi}{2}} - 1}{2} \right). \] This simplifies to: \[ I = \frac{(e^{\frac{\pi}{2}} + 1) - (e^{\frac{\pi}{2}} - 1)}{2} = \frac{2}{2} = 1. \] Thus, the final answer is: \[ \int_0^{\frac{\pi}{2}} e^x (\sin x - \cos x) \, dx = 1. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) SHORT ANSWER TYPE QUESTIONS|43 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(pi//2) e^x (sinx-cosx) dx

int_(0)^(pi//2) e^x(sinx+cosx) dx

Evaluate : int_0^(pi/2) x sinx dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

Evaluate : int_(0)^(pi//2)e^(x)(sin x- cos x)dx

Evaluate: int_0^(pi/2) cos^2x/(2+sinx+cosx)dx

Evaluate int_0^(pi/2) x/(sinx+cosx)dx

Evaluate int_0^(pi/2) cos^2x dx

Evaluate int_0^(pi/2) sinx/(sinx + cosx) dx

Evaluate: int_0^(pi//2)cos^2x\ dx