Home
Class 12
MATHS
Evaluate: int0^(pi//4) secx. sqrt((1-sin...

Evaluate: `int_0^(pi//4) secx. sqrt((1-sinx)/(1+sinx)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_0^{\frac{\pi}{4}} \sec x \sqrt{\frac{1 - \sin x}{1 + \sin x}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_0^{\frac{\pi}{4}} \sec x \sqrt{\frac{1 - \sin x}{1 + \sin x}} \, dx \] ### Step 2: Simplify the Square Root We can simplify the square root: \[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} = \frac{\sqrt{1 - \sin x}}{\sqrt{1 + \sin x}} \] Thus, we rewrite the integral as: \[ I = \int_0^{\frac{\pi}{4}} \sec x \cdot \frac{\sqrt{1 - \sin x}}{\sqrt{1 + \sin x}} \, dx \] ### Step 3: Multiply and Divide by \(1 - \sin x\) To further simplify, we multiply and divide by \(1 - \sin x\): \[ I = \int_0^{\frac{\pi}{4}} \sec x \cdot \frac{(1 - \sin x)}{\sqrt{(1 - \sin x)(1 + \sin x)}} \, dx \] This gives us: \[ I = \int_0^{\frac{\pi}{4}} \sec x \cdot \frac{(1 - \sin x)}{\sqrt{1 - \sin^2 x}} \, dx \] Since \(1 - \sin^2 x = \cos^2 x\), we have: \[ \sqrt{1 - \sin^2 x} = \cos x \] So the integral becomes: \[ I = \int_0^{\frac{\pi}{4}} \sec x \cdot \frac{(1 - \sin x)}{\cos x} \, dx \] ### Step 4: Simplify the Expression This can be simplified to: \[ I = \int_0^{\frac{\pi}{4}} \sec^2 x (1 - \sin x) \, dx \] This can be split into two integrals: \[ I = \int_0^{\frac{\pi}{4}} \sec^2 x \, dx - \int_0^{\frac{\pi}{4}} \sec^2 x \sin x \, dx \] ### Step 5: Evaluate the First Integral The first integral is: \[ \int \sec^2 x \, dx = \tan x \] Evaluating from \(0\) to \(\frac{\pi}{4}\): \[ \left[ \tan x \right]_0^{\frac{\pi}{4}} = \tan\left(\frac{\pi}{4}\right) - \tan(0) = 1 - 0 = 1 \] ### Step 6: Evaluate the Second Integral For the second integral, we use integration by parts: Let \(u = \sin x\) and \(dv = \sec^2 x \, dx\). Then \(du = \cos x \, dx\) and \(v = \tan x\). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int \sin x \sec^2 x \, dx = \sin x \tan x \bigg|_0^{\frac{\pi}{4}} - \int \tan x \cos x \, dx \] Evaluating \( \sin x \tan x \) from \(0\) to \(\frac{\pi}{4}\): \[ \sin\left(\frac{\pi}{4}\right) \tan\left(\frac{\pi}{4}\right) - \sin(0) \tan(0) = \frac{\sqrt{2}}{2} \cdot 1 - 0 = \frac{\sqrt{2}}{2} \] The second integral simplifies to: \[ \int \tan x \cos x \, dx = \int \sin x \, dx = -\cos x \bigg|_0^{\frac{\pi}{4}} = -\left(-\frac{\sqrt{2}}{2} + 1\right) = 1 - \frac{\sqrt{2}}{2} \] ### Step 7: Combine the Results Putting it all together: \[ I = 1 - \left( \frac{\sqrt{2}}{2} - \left(1 - \frac{\sqrt{2}}{2}\right) \right) \] Thus: \[ I = 1 - \frac{\sqrt{2}}{2} + 1 - \frac{\sqrt{2}}{2} = 2 - \sqrt{2} \] ### Final Result The value of the integral is: \[ \boxed{2 - \sqrt{2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) SHORT ANSWER TYPE QUESTIONS|43 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_0^(pi/2) x sinx dx

int_0^(pi/2) cosx/sqrt(1+sinx)dx

Evaluate: int_0^(2pi) [2sinx]dx

Evaluate int_0^(pi/2) sqrt(cosx)/(sqrt(cosx)+sqrt(sinx))dx

Evaluate: inttan^(-1){sqrt(((1-sinx)/(1+sinx)))} dx , -pi//2

Evaluate: int_0^(pi//2) e^x (sinx-cosx) dx

Using the properties of definite integral Evaluate : int_0^(pi/2) sinx /(sinx + cosx) dx

Evaluate int_0^(pi/2) sqrt(1+sinx) dx

Evaluate: int_0^pix/(1+sinx)dx

Evaluate: int_0^(pi/2) ((x-pi/4)^2 sinx)/(sinx+cosx)dx