Home
Class 12
MATHS
Verify the following using the concept o...

Verify the following using the concept of integration as an antiderivative.
`int x^3/(x+1) dx= x-x^2/2+x^3/3 -log|x+1|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the integral \(\int \frac{x^3}{x+1} \, dx = x - \frac{x^2}{2} + \frac{x^3}{3} - \log|x+1| + C\), we will differentiate the right-hand side and check if we obtain the left-hand side. ### Step 1: Differentiate the Right-Hand Side We start by differentiating the expression on the right-hand side: \[ y = x - \frac{x^2}{2} + \frac{x^3}{3} - \log|x+1| + C \] Now, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}\left(x\right) - \frac{d}{dx}\left(\frac{x^2}{2}\right) + \frac{d}{dx}\left(\frac{x^3}{3}\right) - \frac{d}{dx}\left(\log|x+1|\right) \] ### Step 2: Apply the Derivative Rules Using basic differentiation rules: 1. The derivative of \(x\) is \(1\). 2. The derivative of \(-\frac{x^2}{2}\) is \(-x\). 3. The derivative of \(\frac{x^3}{3}\) is \(x^2\). 4. The derivative of \(-\log|x+1|\) is \(-\frac{1}{x+1}\) (using the chain rule). Putting it all together: \[ \frac{dy}{dx} = 1 - x + x^2 - \frac{1}{x+1} \] ### Step 3: Simplify the Expression Now, we simplify the expression: \[ \frac{dy}{dx} = 1 - x + x^2 - \frac{1}{x+1} \] To combine the terms, we can express \(1\) as \(\frac{x+1}{x+1}\): \[ \frac{dy}{dx} = \frac{x+1}{x+1} - x + x^2 - \frac{1}{x+1} \] Combining the fractions: \[ \frac{dy}{dx} = \frac{x + 1 - x(x + 1) + x^2(x + 1) - 1}{x + 1} \] This simplifies to: \[ \frac{dy}{dx} = \frac{x^3 + x^2 - x^2 - x - 1 + 1}{x + 1} = \frac{x^3}{x + 1} \] ### Step 4: Conclusion Thus, we have: \[ \frac{dy}{dx} = \frac{x^3}{x + 1} \] This confirms that: \[ \int \frac{x^3}{x + 1} \, dx = x - \frac{x^2}{2} + \frac{x^3}{3} - \log|x + 1| + C \] is indeed correct.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise REVISION EXERCISE|28 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 7|43 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Integrate: int(3 x^2)/(x^(3)-1)dx

Find the following integral (using partial fraction method) int (3x)/((x-1)(x-2)) dx

Knowledge Check

  • An antiderivative of the integral inte^(x)((1-x)/(1+x))^(2)dx is

    A
    `e^(x)(1+x^(2))^(2)`
    B
    `(-xe^(x))/((1+x^(2))^(2))`
    C
    `(e^(x)(1-x))/((1+x^(2)))`
    D
    `(e^(x))/(1+x^(2))`
  • Similar Questions

    Explore conceptually related problems

    Integrate : int_(2)^(1)(1)/(x log x)dx

    Find the following integral (using partial fraction method) int (2x+1)/((x-1)(x+2)(x-3)) dx

    Find the following integral (using partial fraction method) int(x^2+1)/((x-1)^2(x+3)) dx

    Find the following integral (using partial fraction method) int (3x-1)/(x+2)^3 dx

    Integration of rational functions int(x^(3)+3)/((x+1)(x^(2)+1))dx.

    Integration of rational functions int(dx)/((x+1)(x+2)^(2)(x-3)^(3))

    Integrate int_1^2x^3dx