Home
Class 12
MATHS
If f'(x) = x-3/x^2,f(1)=11/2, then f(x)=...

If `f'(x) = x-3/x^2,f(1)=11/2`, then f(x)=……..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given its derivative \( f'(x) = \frac{x - 3}{x^2} \) and the initial condition \( f(1) = \frac{11}{2} \). ### Step-by-Step Solution: 1. **Write down the derivative:** \[ f'(x) = \frac{x - 3}{x^2} \] 2. **Separate the variables for integration:** \[ dy = \frac{x - 3}{x^2} dx \] 3. **Rewrite the right-hand side:** \[ dy = \left( \frac{x}{x^2} - \frac{3}{x^2} \right) dx = \left( \frac{1}{x} - \frac{3}{x^2} \right) dx \] 4. **Integrate both sides:** \[ \int dy = \int \left( \frac{1}{x} - \frac{3}{x^2} \right) dx \] The left side integrates to \( y \). The right side integrates as follows: \[ \int \frac{1}{x} dx = \ln |x| \quad \text{and} \quad \int -\frac{3}{x^2} dx = 3 \cdot \frac{1}{x} \] Thus, we have: \[ y = \ln |x| + \frac{3}{x} + C \] 5. **Substitute back for \( f(x) \):** \[ f(x) = \ln |x| + \frac{3}{x} + C \] 6. **Use the initial condition to find \( C \):** Given \( f(1) = \frac{11}{2} \): \[ f(1) = \ln |1| + \frac{3}{1} + C = 0 + 3 + C = \frac{11}{2} \] Therefore: \[ 3 + C = \frac{11}{2} \] \[ C = \frac{11}{2} - 3 = \frac{11}{2} - \frac{6}{2} = \frac{5}{2} \] 7. **Final expression for \( f(x) \):** Substitute \( C \) back into the equation: \[ f(x) = \ln |x| + \frac{3}{x} + \frac{5}{2} \] ### Final Answer: \[ f(x) = \ln |x| + \frac{3}{x} + \frac{5}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise REVISION EXERCISE|28 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=x-3/x^2,f(1)=11/2 , find f(x).

If f'(x)= x-(3)/(x^(3)), f(1) = (11)/(2) find f(x)

Knowledge Check

  • If f'(x)=3x^(2)+2x-4 and f(1)=3, then f(x)=

    A
    `x^(3)+x^(2)-4x+5`
    B
    `x^(3)-x^(2)+4x-5`
    C
    `x^(3)+x^(2)-4x+3`
    D
    `x^(3)+x^(2)+4x+5`
  • If f(x)=f'(x) and f(1)=2, then f(3)=

    A
    `e^(2)`
    B
    `2e^(2)`
    C
    `3e^(2)`
    D
    `2e^(3)`
  • If f(x)=(2x+3)/(x-2) , then: (f@f)(x)=

    A
    `(3x+2)/(x-3)`
    B
    x
    C
    `(3x+4)/(x-3)`
    D
    none of these.
  • Similar Questions

    Explore conceptually related problems

    If f(x)=2x+|x-x^(2)|,-1<=x<=1 ,then f(x) is is(a) continuous but not differentiable in [-1,1]

    If f(x)=[x][sin x] in (-1,1) then f(x) is

    If 2f(x)-3f((1)/(x))=6x+(1)/(x) then find f(x) and f(2)

    If f(x) is a quadratic function such that f(0)=3,f(1)=6 and f(2)=11 , then: f(x)=

    If : 3f(x)-2f((1)/(x))=x," then: "f'(2)=