Home
Class 12
MATHS
If z=-1, the principal value of arg. (z^...

If `z=-1`, the principal value of arg. `(z^(2//3))` is equal to :

A

`(pi)/(3)`

B

`(2pi)/(3)` or `2pi`

C

`(10pi)/(3)`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Latest Questions from AJEE/JEE examinations|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Questions from karnataka CET & COMED|15 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Questions from karnataka CET & COMED|15 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MODERN PUBLICATION|Exercise Recent Competitive Questions (RCQs)|12 Videos
  • DEFINITE INTEGRALS

    MODERN PUBLICATION|Exercise RECENT COMPETITIVE QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

If z=(-2)/(1+sqrt(3) i) , then the value of arg z is

If |z|=1 and z ne pm 1 , then all the values of (z)/(1-z^(2)) lie on

Knowledge Check

  • The value of (z+3)(bar(z)+3) is equivalent to

    A
    `|z+3|^(2)`
    B
    `|z-3|`
    C
    `z^(2)+3`
    D
    none of these
  • If x, y, z are all different and not equal to zero and |{:(1+x,,1,,1),(1,,1+y,,1),(1,,1,,1+z):}| = 0 then the value of x^(-1) + y^(-1) + z^(-1) is equal to

    A
    xyz
    B
    `x^(-1)y^(-1)z^(-1)`
    C
    `-x-y-z`
    D
    `-1`
  • Let z_(1) and z_(2) be two distinct complex numbers and let z=(1-t)z_(1)+tz_(2) for some real number t with 0 lt t lt 1 . If Arg (w) denotes the principal argument of a non zero complex number w , then

    A
    `|z-z_(1)|+|z-z_(2)|=|z_(1)-z_(2)|`
    B
    Arg`|z-z_(1)|=Arg|z-z_(2)|`
    C
    `|{:(z-z_(1),barz-barz_(1)),(z_(2)-z_(1),barz_(2)-barz_(1)):}|=0`
    D
    `Arg(z-z_(1))=Arg(z_(2)-z_(1))`
  • Similar Questions

    Explore conceptually related problems

    If z =10, find the value of z^3-3(z-10) ,

    Find the principal value of the arguments of z_(1)=2+2i,z_(2)=-3+3i,z_(3)=-4-4iand z_(4)=5-5i,where i=sqrt(-1).

    If arg (z_(1))=(17pi)/18 and arg (z_(2))=(7pi)/18, find the principal argument of z_(1)z_(2) and (z_(1)//z_(2)).

    If |z|ge3, then determine the least value of |z+(1)/(z)| .

    If z_(1) and z_(2) are conjugate to each other , find the principal argument of (-z_(1)z_(2)) .