Home
Class 11
PHYSICS
Obtian (dy)/(dx) for the following : y...

Obtian `(dy)/(dx)` for the following :
`y=x^(-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = x^{-3}\), we will use the power rule of differentiation. The power rule states that if \(y = x^n\), then \(\frac{dy}{dx} = n \cdot x^{n-1}\). ### Step-by-step Solution: 1. **Identify the function**: We have \(y = x^{-3}\). 2. **Apply the power rule**: According to the power rule, if \(y = x^n\), then: \[ \frac{dy}{dx} = n \cdot x^{n-1} \] Here, \(n = -3\). 3. **Differentiate**: Substitute \(n = -3\) into the power rule: \[ \frac{dy}{dx} = -3 \cdot x^{-3-1} \] 4. **Simplify the expression**: Now simplify the exponent: \[ \frac{dy}{dx} = -3 \cdot x^{-4} \] 5. **Final result**: Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{3}{x^4} \] ### Summary: The derivative of \(y = x^{-3}\) is \(\frac{dy}{dx} = -\frac{3}{x^4}\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (6)|16 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (7)|6 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (4)|7 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for the following : y=x^(-3)

Obtian (dy)/(dx) for the following : y=x^(7//2)

Find (dy)/(dx) for the following : y=x

Obtian (dy)/(dx) for the following : y=5x^(4)+6x^(3//2)+9x

Obtian (dy)/(dx) for the following : (9x^(3)-8x+7)(3x^(5)+5)

Obtian (dy)/(dx) for the following : (i) (3-4x^(2))^(2) (ii) sqrt((3+x^(2)))

Obtian (dy)/(dx) for the following : (x^(2)+2)/(x^(3)+5)

Obtian (dy)/(dx) for the following : (i) (1+x)/(x) (ii) (1)/((1+x)^(2))

Obtian (dy)/(dx) for the following : (1-sqrtx)/(1+sqrtx)

Find (dy)/(dx) in the following: 2x+3y=sin y