Home
Class 11
PHYSICS
Evalueta int(0)^(T)I(0)sin omegat dt...

Evalueta
`int_(0)^(T)I_(0)sin omegat dt`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int_{0}^{T} I_{0} \sin(\omega t) \, dt, \] we can follow these steps: ### Step 1: Factor out the constant Since \(I_{0}\) is a constant, we can factor it out of the integral: \[ I_{0} \int_{0}^{T} \sin(\omega t) \, dt. \] ### Step 2: Integrate \(\sin(\omega t)\) The integral of \(\sin(\omega t)\) with respect to \(t\) is given by: \[ \int \sin(\omega t) \, dt = -\frac{1}{\omega} \cos(\omega t) + C, \] where \(C\) is the constant of integration. Therefore, we can write: \[ \int_{0}^{T} \sin(\omega t) \, dt = \left[-\frac{1}{\omega} \cos(\omega t)\right]_{0}^{T}. \] ### Step 3: Evaluate the definite integral Now we need to evaluate this expression from \(0\) to \(T\): \[ -\frac{1}{\omega} \cos(\omega T) - \left(-\frac{1}{\omega} \cos(0)\right). \] Since \(\cos(0) = 1\), we have: \[ -\frac{1}{\omega} \cos(\omega T) + \frac{1}{\omega}. \] ### Step 4: Combine the results Now we can combine the results: \[ \frac{1}{\omega} - \frac{1}{\omega} \cos(\omega T) = \frac{1}{\omega} (1 - \cos(\omega T)). \] ### Step 5: Multiply by \(I_{0}\) Finally, we multiply by \(I_{0}\): \[ I_{0} \left(\frac{1}{\omega} (1 - \cos(\omega T})\right). \] ### Final Result Thus, the evaluated integral is: \[ \int_{0}^{T} I_{0} \sin(\omega t) \, dt = \frac{I_{0}}{\omega} (1 - \cos(\omega T)). \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Evalueta int_(0)^(T//2)I_(0)sin omegatdt Given that omegaT=2pi.

Evalueta int_(0)^(T)E_(0)I_(0)sin omega t sin(omegat+phi)dt

Knowledge Check

  • The maximum value of f(x) =int_(0)^(1) t sin (x+pi t)dt is

    A
    `(1)/(pi)sqrt(pi^(2)+4)`
    B
    `(1)/(pi^(2))sqrt(pi^(2)+4)`
    C
    `sqrt(pi^(2)+4)`
    D
    `(1)/(2pi^(2))sqrt(pi^(2)+4)`
  • For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

    A
    maximum or minimum according as n is odd or even respectively .
    B
    minimum or maximum according as n is odd or even respectively
    C
    maximum at x= n `pi`
    D
    minimum at x= n `pi`
  • For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

    A
    local maximum at `pi` and local minima at `2pi`
    B
    local maximum at `pi` and `2pi`
    C
    local minimum at `pi` and `2pi`
    D
    local minimum at `pi` and local maximum at `2pi
  • Similar Questions

    Explore conceptually related problems

    Evaluate int_(0)^(oo)(dt)/(t)

    int_(0)^(2 pi)[sin t]dt

    Evaluate int^t _0 A sin omega dt where A and omega are constants.

    int_(0)^(9)[sqrt(t)]dt

    The value of int_(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt , is