Home
Class 12
PHYSICS
The binding energy per nucleon of ""(7)N...

The binding energy per nucleon of `""_(7)N^(14)` nucleus is:
(Mass of `""_(7)N^(14) = 14.00307 u`)
mass of proton = 1.007825 u
mass of neutron = 1.008665 u

A

7.471 MeV

B

8.471 MeV

C

`11.9 xx 10^(-13)` J

D

`12.9 xx 10^(-9)` J

Text Solution

AI Generated Solution

The correct Answer is:
To find the binding energy per nucleon of the Nitrogen-14 nucleus, we will follow these steps: ### Step 1: Identify the given values - Mass of Nitrogen-14 nucleus, \( M_N = 14.00307 \, u \) - Mass of proton, \( M_p = 1.007825 \, u \) - Mass of neutron, \( M_n = 1.008665 \, u \) - Atomic number of Nitrogen, \( Z = 7 \) - Mass number of Nitrogen, \( A = 14 \) ### Step 2: Calculate the number of neutrons The number of neutrons \( N \) in the nucleus can be calculated using the formula: \[ N = A - Z \] Substituting the values: \[ N = 14 - 7 = 7 \] ### Step 3: Calculate the total mass of protons and neutrons The total mass of protons and neutrons in the nucleus is given by: \[ \text{Total mass} = Z \cdot M_p + N \cdot M_n \] Substituting the values: \[ \text{Total mass} = 7 \cdot 1.007825 + 7 \cdot 1.008665 \] Calculating this: \[ \text{Total mass} = 7.054775 + 7.060655 = 14.11543 \, u \] ### Step 4: Calculate the mass defect \( \Delta M \) The mass defect \( \Delta M \) is given by: \[ \Delta M = \text{Total mass} - M_N \] Substituting the values: \[ \Delta M = 14.11543 - 14.00307 = 0.11236 \, u \] ### Step 5: Calculate the binding energy \( B.E. \) The binding energy can be calculated using the formula: \[ B.E. = \Delta M \cdot c^2 \] Where \( c^2 \) in terms of energy is \( 931.5 \, \text{MeV/u} \). Thus: \[ B.E. = 0.11236 \cdot 931.5 \, \text{MeV} \] Calculating this: \[ B.E. = 104.663 \, \text{MeV} \] ### Step 6: Calculate the binding energy per nucleon The binding energy per nucleon is given by: \[ \text{Binding energy per nucleon} = \frac{B.E.}{A} \] Substituting the values: \[ \text{Binding energy per nucleon} = \frac{104.663}{14} \] Calculating this: \[ \text{Binding energy per nucleon} = 7.475 \, \text{MeV} \] ### Final Result The binding energy per nucleon of the Nitrogen-14 nucleus is approximately: \[ \text{Binding energy per nucleon} \approx 7.47 \, \text{MeV} \] ---

To find the binding energy per nucleon of the Nitrogen-14 nucleus, we will follow these steps: ### Step 1: Identify the given values - Mass of Nitrogen-14 nucleus, \( M_N = 14.00307 \, u \) - Mass of proton, \( M_p = 1.007825 \, u \) - Mass of neutron, \( M_n = 1.008665 \, u \) - Atomic number of Nitrogen, \( Z = 7 \) - Mass number of Nitrogen, \( A = 14 \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NUCLEI

    MODERN PUBLICATION|Exercise COMPETITION FILE (MULTIPLE CHOICE QUESTIONS BASED ON A GIVEN PASSAGE/COMPREHENSION)|8 Videos
  • NUCLEI

    MODERN PUBLICATION|Exercise COMPETITION FILE (ASSERTION REASON TYPE QUESTIONS)|9 Videos
  • NUCLEI

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE ADVANCED FOR IIT ENTRANCES)|3 Videos
  • MOVING CHARGES AND MAGNETISM

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|13 Videos
  • RAY OPTICS AND OPTICAL INSTRUMENTS

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|14 Videos

Similar Questions

Explore conceptually related problems

Draw the graph to show variation of binding energy per nucleon with mass number of different atomic nuclei. Calculate binding energy per nucleon of " "_(20)^(40)Ca nucleus. Given : mass of " "_(20)^(40)Ca = 39.962589 u , mass of proton=1.007825 u, mass of neutron=1.008665 u and 1 u=931 MeV/ c^(2) .

Calculate the binding energy per nucleon for a ._(6)C^(12) nucleus. Atomic mass of ._(6)C^(12) = 12am u , mass of a photon = 1.007825 amu, mass of a neutron = 1.008665 amu.

Knowledge Check

  • What is the binding energy per nucleon of _(6)C^(12) nucleus? Given , mass of C^(12) (m_(c))_(m) = 12.000 u Mass of proton m_(p) = 1.0078 u Mass of neutron m_(n) = 1.0087 u and 1 amu = 931.4 MeV

    A
    5.26 MeV
    B
    10.11 MeV
    C
    15.65 meV
    D
    7.68 MeV
  • Similar Questions

    Explore conceptually related problems

    Calculate the binding energy per nucleon of ._26Fe^(56) nucleus. Given that mass of ._26Fe^(56)=55.934939u , mass of proton =1.007825u and mass of neutron =1.008665 u and 1u=931MeV .

    Calculate the binding energy per nucleon of ._(20)^(40)Ca . Given that mass of ._(20)^(40)Ca nucleus = 39.962589 u , mass of proton = 1.007825 u . Mass of Neutron = 1.008665 u and 1 u is equivalent to 931 MeV .

    Find the binding energy and binding energy per nucleon of nucleus ""_(83)B^(209) . Given : mass of proton = 1.0078254 u. mass of neutron = 1.008665 u. Mass of ""_(83)Bi^(209)= 208.980388u

    What is the binding energy per nucleon in ._2He^4 Given , Mass of ._2He^4 =4.002604 amu Mass of proton =1.007825 amu Mass of neutron =1.008665 amu

    Calculate binding energy per n ucleon of ""_(83)Bi^(209) . Given mass of ""_(83)Bi^(209)=208.980388 a.m.u, mass of neutron =1.008665 a.m.u. and mass of proton =1.007825 a.m.u. Take 1 a.m.u. =931 M eV.

    Calculate the binding energy for nucleon of . _6^(12) C nucleus, if mass of proton m_p = 10078 u , mass of neutron m_n = 1.0087 u , mass of C_12, m_C =12.0000 u , and 1 u =931 .4 MeV .

    The binding energy per nucleon for ._(3)Li^(7) will be, if the mass of ._(3)Li^(7) is 7.0163 a.m.u.