Home
Class 12
PHYSICS
The binding energy per nucleon of ""(7)N...

The binding energy per nucleon of `""_(7)N^(14)` nucleus is:
(Mass of `""_(7)N^(14) = 14.00307 u`)
mass of proton = 1.007825 u
mass of neutron = 1.008665 u

A

7.471 MeV

B

8.471 MeV

C

`11.9 xx 10^(-13)` J

D

`12.9 xx 10^(-9)` J

Text Solution

AI Generated Solution

The correct Answer is:
To find the binding energy per nucleon of the Nitrogen-14 nucleus, we will follow these steps: ### Step 1: Identify the given values - Mass of Nitrogen-14 nucleus, \( M_N = 14.00307 \, u \) - Mass of proton, \( M_p = 1.007825 \, u \) - Mass of neutron, \( M_n = 1.008665 \, u \) - Atomic number of Nitrogen, \( Z = 7 \) - Mass number of Nitrogen, \( A = 14 \) ### Step 2: Calculate the number of neutrons The number of neutrons \( N \) in the nucleus can be calculated using the formula: \[ N = A - Z \] Substituting the values: \[ N = 14 - 7 = 7 \] ### Step 3: Calculate the total mass of protons and neutrons The total mass of protons and neutrons in the nucleus is given by: \[ \text{Total mass} = Z \cdot M_p + N \cdot M_n \] Substituting the values: \[ \text{Total mass} = 7 \cdot 1.007825 + 7 \cdot 1.008665 \] Calculating this: \[ \text{Total mass} = 7.054775 + 7.060655 = 14.11543 \, u \] ### Step 4: Calculate the mass defect \( \Delta M \) The mass defect \( \Delta M \) is given by: \[ \Delta M = \text{Total mass} - M_N \] Substituting the values: \[ \Delta M = 14.11543 - 14.00307 = 0.11236 \, u \] ### Step 5: Calculate the binding energy \( B.E. \) The binding energy can be calculated using the formula: \[ B.E. = \Delta M \cdot c^2 \] Where \( c^2 \) in terms of energy is \( 931.5 \, \text{MeV/u} \). Thus: \[ B.E. = 0.11236 \cdot 931.5 \, \text{MeV} \] Calculating this: \[ B.E. = 104.663 \, \text{MeV} \] ### Step 6: Calculate the binding energy per nucleon The binding energy per nucleon is given by: \[ \text{Binding energy per nucleon} = \frac{B.E.}{A} \] Substituting the values: \[ \text{Binding energy per nucleon} = \frac{104.663}{14} \] Calculating this: \[ \text{Binding energy per nucleon} = 7.475 \, \text{MeV} \] ### Final Result The binding energy per nucleon of the Nitrogen-14 nucleus is approximately: \[ \text{Binding energy per nucleon} \approx 7.47 \, \text{MeV} \] ---

To find the binding energy per nucleon of the Nitrogen-14 nucleus, we will follow these steps: ### Step 1: Identify the given values - Mass of Nitrogen-14 nucleus, \( M_N = 14.00307 \, u \) - Mass of proton, \( M_p = 1.007825 \, u \) - Mass of neutron, \( M_n = 1.008665 \, u \) - Atomic number of Nitrogen, \( Z = 7 \) - Mass number of Nitrogen, \( A = 14 \) ...
Promotional Banner

Topper's Solved these Questions

  • NUCLEI

    MODERN PUBLICATION|Exercise COMPETITION FILE (MULTIPLE CHOICE QUESTIONS BASED ON A GIVEN PASSAGE/COMPREHENSION)|8 Videos
  • NUCLEI

    MODERN PUBLICATION|Exercise COMPETITION FILE (ASSERTION REASON TYPE QUESTIONS)|9 Videos
  • NUCLEI

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE ADVANCED FOR IIT ENTRANCES)|3 Videos
  • MOVING CHARGES AND MAGNETISM

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|13 Videos
  • RAY OPTICS AND OPTICAL INSTRUMENTS

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|14 Videos

Similar Questions

Explore conceptually related problems

Calculate the binding energy per nucleon of ._26Fe^(56) nucleus. Given that mass of ._26Fe^(56)=55.934939u , mass of proton =1.007825u and mass of neutron =1.008665 u and 1u=931MeV .

What is the binding energy per nucleon of _(6)C^(12) nucleus? Given , mass of C^(12) (m_(c))_(m) = 12.000 u Mass of proton m_(p) = 1.0078 u Mass of neutron m_(n) = 1.0087 u and 1 amu = 931.4 MeV

Calculate the binding energy per nucleon of ._(20)^(40)Ca . Given that mass of ._(20)^(40)Ca nucleus = 39.962589 u , mass of proton = 1.007825 u . Mass of Neutron = 1.008665 u and 1 u is equivalent to 931 MeV .

What is the binding energy per nucleon in ._2He^4 Given , Mass of ._2He^4 =4.002604 amu Mass of proton =1.007825 amu Mass of neutron =1.008665 amu

Calculate the binding energy for nucleon of . _6^(12) C nucleus, if mass of proton m_p = 10078 u , mass of neutron m_n = 1.0087 u , mass of C_12, m_C =12.0000 u , and 1 u =931 .4 MeV .

The binding energy per nucleon for ._(3)Li^(7) will be, if the mass of ._(3)Li^(7) is 7.0163 a.m.u.