Home
Class 11
CHEMISTRY
The solubility of silver chromate Ag2CrO...

The solubility of silver chromate `Ag_2CrO_4` is `8.0 xx 10^(-5) " mol L"^(-1)`. Calculate the solubility product.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the solubility product (Ksp) of silver chromate (Ag2CrO4) given its solubility, we can follow these steps: ### Step 1: Write the dissociation equation Silver chromate (Ag2CrO4) dissociates in water as follows: \[ \text{Ag}_2\text{CrO}_4 (s) \rightleftharpoons 2 \text{Ag}^+ (aq) + \text{CrO}_4^{2-} (aq) \] ### Step 2: Define solubility Let the solubility of Ag2CrO4 be \( S = 8.0 \times 10^{-5} \, \text{mol/L} \). ### Step 3: Determine the concentrations of ions at equilibrium From the dissociation equation: - For every 1 mole of Ag2CrO4 that dissolves, it produces 2 moles of Ag⁺ and 1 mole of CrO₄²⁻. - Therefore, at equilibrium: - The concentration of Ag⁺ will be \( 2S = 2 \times 8.0 \times 10^{-5} = 1.6 \times 10^{-4} \, \text{mol/L} \) - The concentration of CrO₄²⁻ will be \( S = 8.0 \times 10^{-5} \, \text{mol/L} \) ### Step 4: Write the expression for Ksp The solubility product (Ksp) expression for the dissociation of Ag2CrO4 is given by: \[ K_{sp} = [\text{Ag}^+]^2 [\text{CrO}_4^{2-}] \] ### Step 5: Substitute the equilibrium concentrations into the Ksp expression Substituting the values we found: \[ K_{sp} = (1.6 \times 10^{-4})^2 \times (8.0 \times 10^{-5}) \] ### Step 6: Calculate Ksp 1. Calculate \( (1.6 \times 10^{-4})^2 \): \[ (1.6 \times 10^{-4})^2 = 2.56 \times 10^{-8} \] 2. Now multiply by \( 8.0 \times 10^{-5} \): \[ K_{sp} = 2.56 \times 10^{-8} \times 8.0 \times 10^{-5} \] \[ K_{sp} = 2.048 \times 10^{-12} \] ### Final Answer Thus, the solubility product \( K_{sp} \) of silver chromate (Ag2CrO4) is: \[ K_{sp} = 2.048 \times 10^{-12} \] ---

To calculate the solubility product (Ksp) of silver chromate (Ag2CrO4) given its solubility, we can follow these steps: ### Step 1: Write the dissociation equation Silver chromate (Ag2CrO4) dissociates in water as follows: \[ \text{Ag}_2\text{CrO}_4 (s) \rightleftharpoons 2 \text{Ag}^+ (aq) + \text{CrO}_4^{2-} (aq) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EQUILIBRIUM

    MODERN PUBLICATION|Exercise Conceptual Question 1|24 Videos
  • EQUILIBRIUM

    MODERN PUBLICATION|Exercise Conceptual Question 2|15 Videos
  • EQUILIBRIUM

    MODERN PUBLICATION|Exercise Unit Practice Test|13 Videos
  • ENVIRONMENTAL POLLUTION

    MODERN PUBLICATION|Exercise UNIT PRACTICE TEST|15 Videos
  • HALOALKANES AND HALOARENES

    MODERN PUBLICATION|Exercise UNIT PRACTICE TEST|12 Videos

Similar Questions

Explore conceptually related problems

The solubility of silver bromide is 7.7 xx 10^(-13) mol^(2) L^(-2). Calculate the solubility of the salt.

The solubility of barium sulphate at 298 K is 1.1 xx10^(-5) mol L^(-1) . Calculate the solubility product of barium sulphate at the same temperature .

Knowledge Check

  • The solubility of silver chromate in 0.01 M K_(2)CrO_(4) is 2 xx 10^(-8) mol m^(-3) . The solublity product of silver chromate will be

    A
    `8 xx 10^(-24)`
    B
    `16 xx 10^(-24)`
    C
    `1.6 xx 10^(-18)`
    D
    `16 xx 10^(-18)`
  • The solubility of silver chromate in 0.01 M K_(2) CrO_(4)" is " 2 xx 10^(-8) mol/1. The solubility product of silver chromate will be

    A
    `8 xx 10^(-24)`
    B
    `16 xx 10^(-24)`
    C
    `1.6 xx 10^(-18)`
    D
    `16 xx 10^(-18)`
  • The solubility of a springly soluble salt AB_(2) in water is 1.0xx10^(-5) mol L^(-1) . Its solubility product is:

    A
    `10^(-15)`
    B
    `10^(-10)`
    C
    `4xx10^(-15)`
    D
    `4xx10^(-10)`
  • Similar Questions

    Explore conceptually related problems

    The solubility of AgBr in water is 1.20 xx 10-5 mol dm ^-3 . Calculate the solubility product of Ag Br.

    The solubility product for silver choride is 1.2xx10^(-10) at 298 K. Calculate the solubility of silver chloride at 298 K.

    The solublity in water of a sparingly soluble salt AB_(2) is 1.0 xx 10^(-5) mol l^(-1) . Its solubility product number will be

    The solubility in water of a sparingly soluble salt AB_2 is 1.0xx10^(-5) mol L^(-1) . Its solubility product number will be

    The solubility in water of a sparingly soluble salt AB_2 is 1.0xx10^(-5) mol L^(-1) . Its solubility product number will be