Home
Class 12
MATHS
If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 an...

If `f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2` and `f(0)=1AAx ,y in R ,d e t e r m in ef(n),n in Ndot`

Text Solution

Verified by Experts

The correct Answer is:
`f(n)=(n+1)^(2)`

Given `f(x+y+1)=(sqrt(f(x))+sqrt(f(y)))^(2)`
Putting `x=y=0,` we get
`f(1)=(sqrt(f(0))+sqrt(f(0)))^(2)=(1+1)^(2)=2^(2)`
Again putting `x=0,y=1` we get
`f(2)=(sqrt(f(0))+sqrt(f(1)))^(2)=(1+2)^(2)=3^(2)`
and for `x=1,y=1,` we get
`f(3)=(sqrt(f(1))+sqrt(f(1)))^(2)=(2+2)^(2)=4^(2)`
Hence, `f(n)=(n+1)^(2)`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.15|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|125 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.13|7 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^(2) and f(0)=1AA x,y in R, determine f(n),n in N in N

If (x+y)=f(x)+f(y)-xy-1AA x,y in R and f(1)=1f(x+y)=f(x)+f(y)-xy-1AA x,y in R and f(1)=1 then the number of solution of f(n)=n,n in N, is 0(b)1 (c) 2 (d) more than 2

Knowledge Check

  • 'If f(x+ y) = f (x)+ f (y) AA x,y R and f (1) = lamda , then f(n), n in N is

    A
    `lamda^n`
    B
    ` (1)/(lamda^n)`
    C
    `n lamda`
    D
    None
  • If f:R to R such that f (x + y) + f (x - y) =2f (x) f (y) AA x,y in R and f (0) ne 0 , then f (x) is an :

    A
    even function
    B
    odd function
    C
    periodic function
    D
    none
  • If f(x+y)=f(x)+f(y) -xy -1 for all x, y in R and f(1)=1 then f(n)=n, n in N is true if

    A
    `n=1`
    B
    `n=1, and n=2`
    C
    n is odd
    D
    any value of n
  • Similar Questions

    Explore conceptually related problems

    Consider E=(8sqrt(x)+5sqrt(y))^(y)=1+f,0<=f<1

    If f((x)/(y))=(f(x))/(f(y)) for all x,y in R,y!=0 and f(t)!=0, if t!=0 and f'(1)=3 then f(x) is

    If f(x+y)=f(x)+f(y),AAx ,\ y in R then prove that f(k x)=kf(x)for\ AAk ,\ x in Rdot

    abs(f(x)-f(y))le(x-y)^2 forall x,y in R and f(0)=1 then

    If f(x+y)=f(x)*f(y) and f(1)=4. Find sum_(r=1)^(n)f(r)