Home
Class 12
MATHS
y=x^(sin2x)...

`y=x^(sin2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x^{\sin(2x)} \), we can follow these steps: ### Step 1: Take the natural logarithm of both sides We start with the equation: \[ y = x^{\sin(2x)} \] Taking the natural logarithm of both sides gives: \[ \log y = \log(x^{\sin(2x)}) \] ### Step 2: Simplify using logarithmic identities Using the property of logarithms that states \( \log(a^b) = b \log a \), we can rewrite the equation as: \[ \log y = \sin(2x) \cdot \log x \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \). Using implicit differentiation on the left side and the product rule on the right side: \[ \frac{d}{dx}(\log y) = \frac{1}{y} \frac{dy}{dx} \] For the right side, we apply the product rule: \[ \frac{d}{dx}(\sin(2x) \log x) = \cos(2x) \cdot 2 \cdot \log x + \sin(2x) \cdot \frac{1}{x} \] ### Step 4: Combine the derivatives Putting it all together, we have: \[ \frac{1}{y} \frac{dy}{dx} = \cos(2x) \cdot 2 \cdot \log x + \sin(2x) \cdot \frac{1}{x} \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now, we multiply both sides by \( y \) to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( 2 \cos(2x) \log x + \frac{\sin(2x)}{x} \right) \] ### Step 6: Substitute back for \( y \) Since \( y = x^{\sin(2x)} \), we substitute back: \[ \frac{dy}{dx} = x^{\sin(2x)} \left( 2 \cos(2x) \log x + \frac{\sin(2x)}{x} \right) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = x^{\sin(2x)} \left( 2 \cos(2x) \log x + \frac{\sin(2x)}{x} \right) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)+(3x^(2))/(1+x^(3))y=(sin^(2)x)/(1+x^(3))

Find the ratio of the two areas bounded by the curve y=x^2sin2x ( x being in radians) and the x-axis from x=0 from x=0 to x=pi .

Knowledge Check

  • If y=x^(2)sin(x^(3)) , then int ydx will be :

    A
    `-cos(x^(3))+C`
    B
    `(-cos.(x^(3))/(3))+C`
    C
    `cos(x^(3))+C`
    D
    `((cos x^(3))/(3))+C`
  • If y= 2 ^(sin x) -sin ^(2)x ,then (dy)/(dx) =

    A
    ` (2sin ^(x) log 2-2 sin x ) (cos x) `
    B
    ` (2sin ^(x) log 2- sin x ) (cos x) `
    C
    ` -(2sin ^(x) log 2-2 sin x ) (cos x) `
    D
    ` -(2sin ^(x) log 2- sin x ) (cos x) `
  • If y=e^(x^(2))sin2x , then what is (dy)/(dx) at x=pi equal to?

    A
    `(1+pi)e^(pi^(2))`
    B
    `2pie^(pi^(2))`
    C
    `2e^(pi^(2))`
    D
    `e^(pi^(2))`
  • Similar Questions

    Explore conceptually related problems

    Q.if y=x^(2)sin x, then (dy)/(dx) will be-

    x(dy)/(dx)-2y=x^(2)+sin(1)/(x^(2)),x>0

    Solve (dy)/(dx)=(sin y+x)/(sin2y-x cos y)

    A function y=f(x) satisfying the differential (dy)/(dx)*sin x-y cos x+(sin^(2)x)/(x^(2))=0 such that y rarr0 as x rarr oo then :

    If tan((pi)/(4)+(y)/(2))=tan^(3)((pi)/(4)+(x)/(2))* Prove that (sin y)/(sin x)=(3+sin^(2)x)/(1+3sin^(2)x)