Home
Class 12
MATHS
y=x^(logx)+(logx)^(x)...

`y=x^(logx)+(logx)^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x^{\log x} + (\log x)^x \), we will break it down into two parts and use the properties of logarithms and differentiation. ### Step-by-Step Solution: 1. **Identify the components of the function**: Let \( y_1 = x^{\log x} \) and \( y_2 = (\log x)^x \). Therefore, we can express \( y \) as: \[ y = y_1 + y_2 \] 2. **Differentiate \( y \)**: Using the sum rule of differentiation: \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} \] 3. **Differentiate \( y_1 = x^{\log x} \)**: To differentiate \( y_1 \), we can use logarithmic differentiation: \[ \log y_1 = \log(x^{\log x}) = \log x \cdot \log x = (\log x)^2 \] Now, differentiate both sides: \[ \frac{1}{y_1} \frac{dy_1}{dx} = 2 \log x \cdot \frac{1}{x} \] Therefore, \[ \frac{dy_1}{dx} = y_1 \cdot \frac{2 \log x}{x} \] Substituting back \( y_1 = x^{\log x} \): \[ \frac{dy_1}{dx} = x^{\log x} \cdot \frac{2 \log x}{x} = 2 x^{\log x - 1} \log x \] 4. **Differentiate \( y_2 = (\log x)^x \)**: Again, we use logarithmic differentiation: \[ \log y_2 = x \log(\log x) \] Differentiate both sides: \[ \frac{1}{y_2} \frac{dy_2}{dx} = \log(\log x) + x \cdot \frac{1}{\log x} \cdot \frac{1}{x} = \log(\log x) + \frac{1}{\log x} \] Therefore, \[ \frac{dy_2}{dx} = y_2 \left( \log(\log x) + \frac{1}{\log x} \right) \] Substituting back \( y_2 = (\log x)^x \): \[ \frac{dy_2}{dx} = (\log x)^x \left( \log(\log x) + \frac{1}{\log x} \right) \] 5. **Combine the derivatives**: Now, we can combine the derivatives: \[ \frac{dy}{dx} = 2 x^{\log x - 1} \log x + (\log x)^x \left( \log(\log x) + \frac{1}{\log x} \right) \] ### Final Answer: \[ \frac{dy}{dx} = 2 x^{\log x - 1} \log x + (\log x)^x \left( \log(\log x) + \frac{1}{\log x} \right) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y=(logx)^(x)

Differentiate the following w.r.t. x : (x)^(logx)+(logx)^(x)

Knowledge Check

  • If y=x^(n)logx+x(logx)^(n)," then "(dy)/(dx) is equal to

    A
    `x^(n-1)(1+nlogx)+(logx)^(n+1)[n+logx]`
    B
    `x^(n-2)(1+nlogx)+(logx)^(n-1)[n+logx]`
    C
    `n^(n-1)(1+nlogx)+(logx)^(n-1)[n-logx]`
    D
    None of the above
  • If y=x^((logx)^(log(logx))) , then (dy)/(dx) is

    A
    `(y)/(x)(lnx^(logx-1))+2lnxln(lnx)`
    B
    `(y)/(x)(logx)^(log(logx))(2log(logx)+1)`
    C
    `[(lnx)^(2)+2ln(lnx)]`
    D
    `(y)/(x)(logy)/(logx)(2log(logx)+1)`
  • Similar Questions

    Explore conceptually related problems

    If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

    If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

    If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

    x^(x)(1+logx)

    y= (logx)^(x)-x^(logx) find dy/dx

    (d(x^(logx)))/(d(logx))=