Home
Class 12
MATHS
(e^(x))/(sinx)...

`(e^(x))/(sinx)`

Text Solution

AI Generated Solution

To differentiate the function \( y = \frac{e^x}{\sin x} \) with respect to \( x \), we will use the quotient rule. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), then its derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = e^x \) and \( v = \sin x \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.6|11 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.3|15 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(sinx))/(x-sinx)

Differentiate : (i) (e^(x))/(x) , (ii) ((2x+3)/(x^(2) - 5)) , (iii) (e^(x))/((1+sinx))

Knowledge Check

  • If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0, then f(0) =

    A
    0
    B
    1
    C
    `1/2`
    D
    2
  • lim_(xrarr0)[(e^x-e^(sinx))/(x-sinx)] is equal to :

    A
    `-1`
    B
    0
    C
    1
    D
    none of these
  • lim_(xrarr0)[(e^x-e^(sinx))/(x-sinx)] is equal to

    A
    `-1`
    B
    0
    C
    1
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    lim_(x to 0) (e^x-e^sinx)/(x-sinx)

    Evaluate int e^(x)((1-sinx)/(1-cosx))dx.

    int_(0)^(pi//2)e^(x)((1+sinx)/(1+cosx))dx=?

    int(e^(logx)+sinx).cos x dx=

    int_(-pi//4)^(pi//4)(e^(x)(x^(3)sinx))/(e^(2x)-1)dx equals