Home
Class 12
MATHS
int " x sec"^(2) " x dx "...

`int " x sec"^(2) " x dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \sec^2 x \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = x \) (which we will differentiate) - \( dv = \sec^2 x \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we find \( du \) and \( v \): - Differentiate \( u \): \[ du = dx \] - Integrate \( dv \): \[ v = \int \sec^2 x \, dx = \tan x \] ### Step 3: Apply the Integration by Parts Formula Now, we apply the integration by parts formula: \[ \int x \sec^2 x \, dx = uv - \int v \, du \] Substituting the values we found: \[ \int x \sec^2 x \, dx = x \tan x - \int \tan x \, dx \] ### Step 4: Integrate \( \tan x \) Now we need to integrate \( \tan x \): \[ \int \tan x \, dx = -\log |\cos x| + C = \log |\sec x| + C \] ### Step 5: Substitute Back Now substitute back into the equation: \[ \int x \sec^2 x \, dx = x \tan x - \left( \log |\sec x| + C \right) \] ### Final Answer Thus, the final answer is: \[ \int x \sec^2 x \, dx = x \tan x - \log |\sec x| + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(i) int " x sec"^(2) " 2x dx "" "(ii) int " x sin"^(3) " x dx "

Evaluate : int " sec"^(2) " 3x dx "

Knowledge Check

  • int tan^3 2x sec 2x dx =

    A
    `sec^3 2x + 3 sec 2x`
    B
    `1/6[ sec^3 2x - 3 sec 2x]`
    C
    `sec^3 2x - 3 sec 2x`
    D
    None of these
  • int sec^(4)x cosec^(2)x dx is equal to

    A
    `tan^(2)x+2tan x-cot x+c`
    B
    `(tan^(3)x)/(3)+2tan x-cot x+c`
    C
    `(tan^(2)x)/(2)+2tan x-cot x+c`
    D
    `(tan^(2)x)/(2)+2tan x-2cot x+c`
  • What is int tan^(2) x sec^(4) x dx equal to ?

    A
    `(sec^(5)x)/(5) + (sec^(3) x)/(3) + c`
    B
    `(tan^(5)x)/(5) + (tan^(3)x)/(3) + c`
    C
    `(tan^(5) x)/(5) + (sec^(3)x)/(3) + c`
    D
    `(sec^(5)x)/(5) + (tan^(3)x)/(3) + c`
  • Similar Questions

    Explore conceptually related problems

    int " log sin x . sec"^(2) " x dx "

    int x sec^2x dx

    int tanx sec^(2)x*dx

    int sec^(2) x cosec^(2) x dx

    int_(-pi)^(pi) tan x sec^(2) x dx = _________.