Home
Class 12
MATHS
int sqrt(2-3x^(2))dx...

`int sqrt(2-3x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{2 - 3x^2} \, dx \), we can use a trigonometric substitution. Here’s a step-by-step solution: ### Step 1: Trigonometric Substitution We notice that the expression under the square root resembles the form \( a^2 - x^2 \). We can rewrite \( 2 - 3x^2 \) as \( 2(1 - \frac{3}{2}x^2) \). To make the substitution easier, we let: \[ x = \sqrt{\frac{2}{3}} \sin \theta \] Then, the differential \( dx \) becomes: \[ dx = \sqrt{\frac{2}{3}} \cos \theta \, d\theta \] ### Step 2: Substitute in the Integral Substituting \( x \) and \( dx \) into the integral gives: \[ \int \sqrt{2 - 3\left(\frac{2}{3}\sin^2 \theta\right)} \cdot \sqrt{\frac{2}{3}} \cos \theta \, d\theta \] This simplifies to: \[ \int \sqrt{2 - 2\sin^2 \theta} \cdot \sqrt{\frac{2}{3}} \cos \theta \, d\theta \] Using the identity \( 1 - \sin^2 \theta = \cos^2 \theta \), we have: \[ \sqrt{2(1 - \sin^2 \theta)} = \sqrt{2} \cos \theta \] Thus, the integral becomes: \[ \int \sqrt{2} \cos \theta \cdot \sqrt{\frac{2}{3}} \cos \theta \, d\theta = \frac{2}{\sqrt{3}} \int \cos^2 \theta \, d\theta \] ### Step 3: Integrate \( \cos^2 \theta \) To integrate \( \cos^2 \theta \), we use the identity: \[ \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \] Thus, we have: \[ \int \cos^2 \theta \, d\theta = \int \frac{1 + \cos(2\theta)}{2} \, d\theta = \frac{1}{2} \theta + \frac{1}{4} \sin(2\theta) + C \] ### Step 4: Substitute Back Substituting back into our integral: \[ \frac{2}{\sqrt{3}} \left( \frac{1}{2} \theta + \frac{1}{4} \sin(2\theta) \right) + C = \frac{1}{\sqrt{3}} \theta + \frac{1}{2\sqrt{3}} \sin(2\theta) + C \] ### Step 5: Convert Back to \( x \) Now we need to convert \( \theta \) back to \( x \). From our substitution, we have: \[ \sin \theta = \frac{\sqrt{3}}{\sqrt{2}} x \implies \theta = \arcsin\left(\frac{\sqrt{3}}{\sqrt{2}} x\right) \] Also, using the double angle formula: \[ \sin(2\theta) = 2 \sin \theta \cos \theta = 2 \left(\frac{\sqrt{3}}{\sqrt{2}} x\right) \sqrt{1 - \left(\frac{3}{2} x^2\right)} = \frac{2\sqrt{3}}{\sqrt{2}} x \sqrt{1 - \frac{3}{2} x^2} \] ### Final Result Thus, the final answer is: \[ \int \sqrt{2 - 3x^2} \, dx = \frac{1}{\sqrt{3}} \arcsin\left(\frac{\sqrt{3}}{\sqrt{2}} x\right) + \frac{1}{2\sqrt{3}} \left( \frac{2\sqrt{3}}{\sqrt{2}} x \sqrt{1 - \frac{3}{2} x^2} \right) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7h|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int sqrt(2x^(2)-3)dx

int sqrt(2x^(2)-3)dx

int sqrt(3-4x^(2))dx

Evaluate: int sqrt(1+2x-3x^(2))dx

I=int sqrt(3-2x-x^(2))dx

Evaluate: int sqrt(3+2x-x^(2))dx

Evaluate: int sqrt(3-x^(2))dx

4. int sqrt(2x^(2)+3)dx

int(3x)sqrt(2-3x^(2))dx

Evaluate: int sqrt(3-2x-2x^(2))dx