Home
Class 12
MATHS
int(0)^(pi) sin 3x dx...

`int_(0)^(pi) sin 3x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\pi} \sin(3x) \, dx \), we will follow these steps: ### Step 1: Identify the integral We need to evaluate the integral: \[ \int_{0}^{\pi} \sin(3x) \, dx \] ### Step 2: Find the antiderivative The antiderivative of \( \sin(3x) \) can be found using the formula for the integral of sine: \[ \int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C \] In our case, \( k = 3 \). Therefore, the antiderivative is: \[ -\frac{1}{3} \cos(3x) + C \] ### Step 3: Apply the limits Now we will apply the limits from \( 0 \) to \( \pi \): \[ \left[-\frac{1}{3} \cos(3x)\right]_{0}^{\pi} \] ### Step 4: Evaluate at the upper limit First, we evaluate at the upper limit \( x = \pi \): \[ -\frac{1}{3} \cos(3\pi) = -\frac{1}{3} \cdot (-1) = \frac{1}{3} \] ### Step 5: Evaluate at the lower limit Next, we evaluate at the lower limit \( x = 0 \): \[ -\frac{1}{3} \cos(3 \cdot 0) = -\frac{1}{3} \cdot 1 = -\frac{1}{3} \] ### Step 6: Subtract the lower limit from the upper limit Now we subtract the value at the lower limit from the value at the upper limit: \[ \frac{1}{3} - \left(-\frac{1}{3}\right) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3} \] ### Final Result Thus, the value of the integral \( \int_{0}^{\pi} \sin(3x) \, dx \) is: \[ \frac{2}{3} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7o|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi) sin3x dx=2/3

Evaluate the following : int_(0)^(pi)x sin^(3)x dx

Knowledge Check

  • If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

    A
    `pi`
    B
    `(pi)/(3)`
    C
    `2pi`
    D
    `(pi)/(2)`
  • The value of int_(0)^(2) 3x^(2)dx+int_(0)^(pi//2) sin x dx is :-

    A
    9
    B
    7
    C
    8
    D
    13
  • int_(0)^(pi) [2 sin x] dx =

    A
    `(2pi)/(3)`
    B
    `-(5pi)/(3)`
    C
    `-pi`
    D
    `-2pi`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(pi) x f(sin x)dx= (pi)/(2) int_(0)^(pi) f(sin x)dx = pi int_(0)^(pi//2) f (sin x)dx

    int_(0)^( pi)sin^(3)x*dx=(4)/(3)

    int_(0)^(pi/4) sin^(3) x dx=(2)/(3)

    int_(0)^(pi) [2sin x]dx=

    The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :