Home
Class 12
MATHS
int(0)^(pi/4)(sin x+cos x)/(9+16 sin 2x)...

`int_(0)^(pi/4)(sin x+cos x)/(9+16 sin 2x)dx`

A

`(1)/(40) log9`

B

`(1)/(20) log9`

C

`(1)/(40) log3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16 \sin 2x} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integral We know that \(\sin 2x = 2 \sin x \cos x\). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16(2 \sin x \cos x)} \, dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 32 \sin x \cos x} \, dx. \] ### Step 2: Use a Substitution Let \(t = \sin x - \cos x\). Then, we differentiate to find \(dt\): \[ dt = \cos x \, dx - \sin x \, dx = (\cos x - \sin x) \, dx. \] We can express \(dx\) in terms of \(dt\): \[ dx = \frac{dt}{\cos x - \sin x}. \] ### Step 3: Change the Limits of Integration When \(x = 0\): \[ t = \sin(0) - \cos(0) = 0 - 1 = -1. \] When \(x = \frac{\pi}{4}\): \[ t = \sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 0. \] Thus, the limits change from \(0\) to \(\frac{\pi}{4}\) to \(-1\) to \(0\). ### Step 4: Substitute in the Integral Now we substitute \(t\) into the integral. We also need to express \(\sin x + \cos x\) and \(\sin 2x\) in terms of \(t\): \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right), \] and \[ \sin 2x = 1 - t^2. \] Thus, we have: \[ I = \int_{-1}^{0} \frac{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)}{9 + 16(1 - t^2)} \cdot \frac{dt}{\cos x - \sin x}. \] ### Step 5: Evaluate the Integral Now, we can simplify the integral further. After simplification, we can factor out constants and use the formula for the integral of the form \(\int \frac{1}{a^2 - x^2} \, dx\). ### Step 6: Final Calculation After performing the integration and substituting back the limits, we will find the value of \(I\). The final result is: \[ I = \frac{1}{40} \log 9. \]

To solve the integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16 \sin 2x} \, dx, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) int_(0)^(oo) (dx)/(e^(x)+e^(-x)) , (ii) int_(0)^(1) (x)/(1+sqrt(x))dx , (iii) int_(0)^(pi//2) (sinxcosx)/(cos^(2)x+3cosx+2) (iv) int_(0)^(pi/2) (sin2theta d theta)/(sin^(4)theta+cos^(4)theta) , (v) int_(0)^(pi//4) (sinx+cosx)/(9+16 sin 2x)dx

Evaluate: int_(0)^((pi)/(4))(sin x+cos x)/(9+16sin2x)dx

Knowledge Check

  • int_(0)^(pi//4)(sin x + cos x)/(3 + sin 2x) dx is equal to

    A
    `-1/4 log 3`
    B
    `1/4 log 3`
    C
    `- 1/3 log 4`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    int_(0)^((pi)/(4))(sin x+cos x)/(9+16sin2x)dx

    Evaluate the definite integrals int_(0)^((pi)/(4))(sin x+cos x)/(9+16sin2x)dx

    int_(0)^(pi//4)(sin x + cos x)/(9+16 sin 2 x )

    int_(0)^( pi/4)(sin x-cos x)dx

    Evaluate int_(0)^(pi//4)(sinx+cosx)/(9+16sin 2x)dx .

    Evaluate :(int_(0)^( pi))/(4)(sin x+cos x)/(16+9sin2x)

    Compute the integrals I = int_(0)^(pi//4) (sin x + cos x)/( 3 + sin 2 x) dx