Home
Class 12
MATHS
int(2)^(8)f(x)dx where f(x)={:{(3x+4",",...

`int_(2)^(8)f(x)dx` where `f(x)={:{(3x+4",",2lexle3),(x^(2)+4",",3lexle8):}`.

Answer

Step by step text solution for int_(2)^(8)f(x)dx where f(x)={:{(3x+4",",2lexle3),(x^(2)+4",",3lexle8):}. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise NCERT MISCELLANEOUS EXERCIES|44 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise UNIT TEST|8 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 7.10|9 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(1)^(4)f(x)dx , where f(x)={:{(2x+8",",1lexle2),(6x",",2lexle4):} .

int_(1)^(4)f(x)dx where f(x)={:{(4x+3",",1lexle2),(3x+5",",2lexle4):}

Knowledge Check

  • int(2^(8x+3))/(2^(4x+3))dx:

    A
    `(1)/(4)(2^(4x))/(log8)+c`
    B
    `(1)/(8)(2^(8x))/(log4)+c`
    C
    `(16^(x))/(log2)+c`
    D
    `((24)^(x))/(log24)+c`
  • The inverse of f(x)={(x,"if",x lt 1),(x^(2),"if",1lexle4),(8sqrt(x),"if",x gt4):} is

    A
    `f^(-1)(x)={(x,"if",x lt 1),(sqrt(x),"if",1lexle16),((x^(2))/64,"if",xgt16):}`
    B
    `f^(-1)(x)={(-x,"if",x lt 1),(sqrt(x),"if",1lexle16),((x^(2))/64,"if",xgt16):}`
    C
    `f^(-1)(x)={(x^(2),"if",x lt 1),(sqrt(x),"if",1lexle16),((x^(2))/64,"if",xgt16):}`
    D
    `f^(-1)(x)={(2x,"if",x lt 1),(sqrt(x),"if",1lexle16),((x^(2))/8,"if",xgt16):}`
  • Similar Questions

    Explore conceptually related problems

    Evaluate int_(0)^(3)f(x)dx , where f(x)={:{(x+3,0lexle2),(3x" ",2lexle3):}

    f(x)={{:(x^(2)", "xle2),(8-2x", "2ltxlt4),(4", "xge4):}

    If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

    Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} lim_(xrarr2) (f(x))/(|g(x)|+1) exists and f is differentiable at x = 1. The value of limit will be

    Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} Let f be differentiable at x = 1 and g(x) be continuous at x = 3. If the roots of the quadratic equation x^(2)+(a+b+c)alphax+49(k+kalpha)=0 are real distinct for all values of alpha then possible values of k will be

    If the function f : R to R is defined by f(x)={{:(2x+7","x lt -2),(x^(2)-2","-2 le x lt 3","),(3x-2","x ge 3):} then find the values of (i) f(4) (ii) f(-2) (iii) f(4)+2f(1) (iv) (f(1)-3f(4))/(f(-3))