Home
Class 11
PHYSICS
Calculate the acceleration of a particle...

Calculate the acceleration of a particle at `t=(pi)/(6)` , if the position vectors of the particle
`vecr=(5 cos t ) hati +(2 sin t) hatj+(6t^(2) sin 2t) hatkm`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of calculating the acceleration of a particle at \( t = \frac{\pi}{6} \), given the position vector \[ \vec{r} = 5 \cos t \hat{i} + 2 \sin t \hat{j} + 6t^2 \sin 2t \hat{k}, \] we will follow these steps: ### Step 1: Differentiate the Position Vector to Find Velocity The velocity \( \vec{v} \) is given by the derivative of the position vector \( \vec{r} \) with respect to time \( t \): \[ \vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt}(5 \cos t) \hat{i} + \frac{d}{dt}(2 \sin t) \hat{j} + \frac{d}{dt}(6t^2 \sin 2t) \hat{k}. \] Calculating each component: 1. For the \( \hat{i} \) component: \[ \frac{d}{dt}(5 \cos t) = -5 \sin t. \] 2. For the \( \hat{j} \) component: \[ \frac{d}{dt}(2 \sin t) = 2 \cos t. \] 3. For the \( \hat{k} \) component, we use the product rule: \[ \frac{d}{dt}(6t^2 \sin 2t) = 6 \left(2t \sin 2t + t^2 \cdot \frac{d}{dt}(\sin 2t)\right) = 6 \left(2t \sin 2t + t^2 \cdot 2 \cos 2t\right) = 12t \sin 2t + 12t^2 \cos 2t. \] Thus, the velocity vector is: \[ \vec{v} = -5 \sin t \hat{i} + 2 \cos t \hat{j} + (12t \sin 2t + 12t^2 \cos 2t) \hat{k}. \] ### Step 2: Differentiate the Velocity Vector to Find Acceleration The acceleration \( \vec{a} \) is given by the derivative of the velocity vector \( \vec{v} \): \[ \vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(-5 \sin t) \hat{i} + \frac{d}{dt}(2 \cos t) \hat{j} + \frac{d}{dt}(12t \sin 2t + 12t^2 \cos 2t) \hat{k}. \] Calculating each component: 1. For the \( \hat{i} \) component: \[ \frac{d}{dt}(-5 \sin t) = -5 \cos t. \] 2. For the \( \hat{j} \) component: \[ \frac{d}{dt}(2 \cos t) = -2 \sin t. \] 3. For the \( \hat{k} \) component, we again use the product rule: \[ \frac{d}{dt}(12t \sin 2t + 12t^2 \cos 2t) = 12 \left(\sin 2t + 2t \cos 2t\right) + 12 \left(2t \cos 2t - 2t^2 \sin 2t\right). \] Simplifying gives: \[ 12 \left(\sin 2t + 2t \cos 2t + 2t \cos 2t - 2t^2 \sin 2t\right) = 12 \left(\sin 2t + 4t \cos 2t - 2t^2 \sin 2t\right). \] Thus, the acceleration vector is: \[ \vec{a} = -5 \cos t \hat{i} - 2 \sin t \hat{j} + 12 \left(\sin 2t + 4t \cos 2t - 2t^2 \sin 2t\right) \hat{k}. \] ### Step 3: Evaluate the Acceleration at \( t = \frac{\pi}{6} \) Substituting \( t = \frac{\pi}{6} \): 1. For the \( \hat{i} \) component: \[ -5 \cos\left(\frac{\pi}{6}\right) = -5 \cdot \frac{\sqrt{3}}{2} = -\frac{5\sqrt{3}}{2}. \] 2. For the \( \hat{j} \) component: \[ -2 \sin\left(\frac{\pi}{6}\right) = -2 \cdot \frac{1}{2} = -1. \] 3. For the \( \hat{k} \) component: \[ 12 \left(\sin\left(\frac{\pi}{3}\right) + 4\left(\frac{\pi}{6}\right) \cos\left(\frac{\pi}{3}\right) - 2\left(\frac{\pi}{6}\right)^2 \sin\left(\frac{\pi}{3}\right)\right). \] Calculating each term: - \( \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \), - \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \), - \( \left(\frac{\pi}{6}\right)^2 = \frac{\pi^2}{36} \). Thus, the \( \hat{k} \) component becomes: \[ 12 \left(\frac{\sqrt{3}}{2} + 4 \cdot \frac{\pi}{6} \cdot \frac{1}{2} - 2 \cdot \frac{\pi^2}{36} \cdot \frac{\sqrt{3}}{2}\right). \] Simplifying gives: \[ 12 \left(\frac{\sqrt{3}}{2} + \frac{2\pi}{6} - \frac{\pi^2 \sqrt{3}}{36}\right) = 12 \left(\frac{\sqrt{3}}{2} + \frac{\pi}{3} - \frac{\pi^2 \sqrt{3}}{36}\right). \] ### Final Result Thus, the acceleration at \( t = \frac{\pi}{6} \) is: \[ \vec{a} = -\frac{5\sqrt{3}}{2} \hat{i} - 1 \hat{j} + 12 \left(\frac{\sqrt{3}}{2} + \frac{\pi}{3} - \frac{\pi^2 \sqrt{3}}{36}\right) \hat{k}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (4)|13 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (5)|5 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (2)|9 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos
  • MOTION IN A STRAIGHT LINE

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|16 Videos

Similar Questions

Explore conceptually related problems

Starting from rest, acceleration of a particle is a = 2t (t-1) . The velocity of the particle at t = 5s is

The magnitude of displacement (in m) covered by a particle in first two seconds if its position vector is given as vecr = 2 t ^(2) hati + 3 t hatj + 9 hatk.

Knowledge Check

  • The velocity vector of the motion described by the position vector of a particle, r = 2t hati + t^(2) hatj is given by

    A
    `v = 2hati + 2thatj`
    B
    `v = 2t hat I + 2thatj`
    C
    `v = t hati +t^(2) hatj`
    D
    `v = 2hati +t^(2) hatj`
  • The position vector of a particle is vec( r) = a cos omega t i + a sin omega t j , the velocity of the particle is

    A
    parallel to the position vector
    B
    perpendicular to the position vector
    C
    directed towards the origin
    D
    directed away from the origin
  • If the displacement of a particle is x=t^(3)-4t^(2)-5t , then the acceleration of particle at t=2 is

    A
    `2" units/sec"^(2)`
    B
    `4" units/sec"^(2)`
    C
    `-2" units/sec"^(2)`
    D
    `-4" units/sec"^(2)`
  • Similar Questions

    Explore conceptually related problems

    The position vector of a particle is r = a sin omega t hati +a cos omega t hatj The velocity of the particle is

    If displacement of particle is s=t^(3)-6t^(2)+9t+15, then velocity of the particle at beginning is

    The position of a particle moving on a straight line depends on time t as x=(t+3)sin (2t)

    A particle is moving with a position vector, vec(r)=[a_(0) sin (2pi t) hat(i)+a_(0) cos (2pi t) hat(j)] . Then -

    Position of a particle varies as y = cos^(2) omega t - sin^(2) omega t . It is