Home
Class 10
MATHS
Prove that : (tan theta)/(1 - cot thet...

Prove that :
`(tan theta)/(1 - cot theta) + (cot theta)/(1 - tan theta) = 1 + sec theta cosec theta` .

Text Solution

AI Generated Solution

The correct Answer is:
To prove the identity \[ \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \csc \theta, \] we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step 1: Rewrite \(\tan \theta\) and \(\cot \theta\) Recall the definitions of tangent and cotangent: \[ \tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta}. \] Substituting these definitions into the LHS gives: \[ \frac{\frac{\sin \theta}{\cos \theta}}{1 - \frac{\cos \theta}{\sin \theta}} + \frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\sin \theta}{\cos \theta}}. \] ### Step 2: Simplify the denominators For the first term: \[ 1 - \frac{\cos \theta}{\sin \theta} = \frac{\sin \theta - \cos \theta}{\sin \theta}. \] Thus, the first term becomes: \[ \frac{\sin \theta}{\cos \theta} \cdot \frac{\sin \theta}{\sin \theta - \cos \theta} = \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)}. \] For the second term: \[ 1 - \frac{\sin \theta}{\cos \theta} = \frac{\cos \theta - \sin \theta}{\cos \theta}. \] Thus, the second term becomes: \[ \frac{\cos \theta}{\sin \theta} \cdot \frac{\cos \theta}{\cos \theta - \sin \theta} = \frac{\cos^2 \theta}{\sin \theta (\cos \theta - \sin \theta)}. \] ### Step 3: Combine the two fractions Now we have: \[ \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} + \frac{\cos^2 \theta}{\sin \theta (\cos \theta - \sin \theta)}. \] Notice that \(\cos \theta - \sin \theta = -(\sin \theta - \cos \theta)\). Thus, we can rewrite the second term: \[ \frac{\cos^2 \theta}{\sin \theta (-1)(\sin \theta - \cos \theta)} = -\frac{\cos^2 \theta}{\sin \theta (\sin \theta - \cos \theta)}. \] Now we can combine the fractions: \[ \frac{\sin^2 \theta - \cos^2 \theta}{\sin \theta \cos \theta (\sin \theta - \cos \theta)}. \] ### Step 4: Use the identity \( \sin^2 \theta - \cos^2 \theta \) Using the identity \( \sin^2 \theta - \cos^2 \theta = -(\cos^2 \theta - \sin^2 \theta) \), we can rewrite this as: \[ \frac{-(\cos^2 \theta - \sin^2 \theta)}{\sin \theta \cos \theta (\sin \theta - \cos \theta)}. \] ### Step 5: Factor the numerator The numerator can be factored as: \[ -(\sin \theta - \cos \theta)(\sin \theta + \cos \theta). \] Thus, we have: \[ \frac{-(\sin \theta - \cos \theta)(\sin \theta + \cos \theta)}{\sin \theta \cos \theta (\sin \theta - \cos \theta)}. \] The \((\sin \theta - \cos \theta)\) terms cancel out: \[ \frac{-(\sin \theta + \cos \theta)}{\sin \theta \cos \theta}. \] ### Step 6: Rewrite in terms of secant and cosecant Now, we can express this as: \[ -\left(\frac{1}{\sin \theta} + \frac{1}{\cos \theta}\right) = -\left(\csc \theta + \sec \theta\right). \] Finally, we rewrite the LHS as: \[ 1 + \sec \theta \csc \theta. \] ### Conclusion Thus, we have shown that: \[ \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \csc \theta. \] Hence, the identity is proved.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MBD NEW STYPE MODEL TEST PAPER - 2

    MBD -HARYANA BOARD|Exercise SET - C (SECTION - A)|16 Videos
  • MBD NEW STYPE MODEL TEST PAPER - 2

    MBD -HARYANA BOARD|Exercise SET - C (SECTION - B)|3 Videos
  • MBD NEW STYPE MODEL TEST PAPER - 2

    MBD -HARYANA BOARD|Exercise SET - B (SECTION - C)|5 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos

Similar Questions

Explore conceptually related problems

Prove that : (tan theta)/(1 -cot theta) + (cot theta)/(1- tan theta) = 1 + cos theta cosec theta

Prove each of the following identities : (tan theta)/((1-cot theta)) + (cot theta)/((1- tan theta)) = (1+ sec theta "cosec" theta)

(tan theta)/(1-cot theta)+(cot theta)/(1-tan theta)=1+sec theta*cos ec theta

Prove that (tan theta)/(1-cot theta)+(cot theta)/(1-tan theta)=1+sec theta+tan theta

Prove that: (sin theta)/(1 - cos theta) + (tan theta)/(1 + cos theta) = cosec theta + cot theta + sec theta cosec theta - cosec theta

tan theta+(1)/(tan theta)=sec theta cosec theta

Prove that: cot theta + tan theta = cosec theta sec theta .

Prove that : (tan theta)/(sec theta -1) + (tan theta)/(sec theta + 1) = 2 cosec theta

Prove that : (tan^(3) theta)/(1+tan^(2)theta) +(cot^(3)theta)/(1+cot^(2)theta) = sec theta "cosec " theta - 2 sin theta cos theta .

prove that: (1-tan theta)^2+(1-cot theta)^2=(sec theta - cosec theta)^2