Home
Class 11
MATHS
If barxis at mean of n values of x, then...

If `barx`is at mean of n values of x, then `overset(n)underset(i=1)Sigma(x_(i)- barx)=0` and if a has value other than `barx " then " overset(n)underset(i=1)Sigma(x_(i)- barx)^(2) " is less than " Sigma(x_(i)-a)^(2)`

Answer

Step by step text solution for If barxis at mean of n values of x, then overset(n)underset(i=1)Sigma(x_(i)- barx)=0 and if a has value other than barx " then " overset(n)underset(i=1)Sigma(x_(i)- barx)^(2) " is less than " Sigma(x_(i)-a)^(2) by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STATISTICS

    MODERN PUBLICATION|Exercise Objective A(Multiple Choice Questions)|14 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise Objective B(Fill in the Blanks)|6 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise Exercise 15( c) (Short Answer Type Questions)|1 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

If barx is at mean of n values of x, then Sigma_(i=1)^(n) (x_(i)- barx)=0 and if a has value other than barx " then " Sigma_(i=1)^(n) (x_(i)- barx)^(2) " is less than " Sigma(x_(i)-a)^(2)

Suppose overset(oo)underset(r=1)Sigma t_(r) =3^(n)-1 AA n in N" then "overset(oo)underset(r=1)Sigma (1)/(t_(r))=

Knowledge Check

  • overset(3)underset(n=1)Sigma tan^(-1) 1/n =

    A
    0
    B
    `pi//2`
    C
    `pi`
    D
    none
  • The values of overset(10)underset(r=1)Sigma r P (r,r) i

    A
    P(11,11)
    B
    P(11,11)-1
    C
    P(11,11)+1
    D
    None of these
  • overset(2n)underset(r=1)Sigma sin^(-1) x_r=npi " then " overset(2n)underset(r=1)Sigma x_i=

    A
    n
    B
    `2n`
    C
    `(n(n+1))/2`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    If overset(10)underset(r=1)Sigmax_(i) = 110 and overset(10)underset(i=1)Sigma x_(i)^(2)=1540 then what is the variance ?

    Suppose a_(1),a_(2),…a_(201) gt 0 and are in G.P. If a_(101)=36 and overset(201)underset(n=1)Sigma a_(n)=216" then "3overset(201)underset(n=1) Sigma (1)/(a_(n))=

    If barx is the mean of x_(1),x_(2),…,x_(n) then the value of sum_(i=1)^(n)(x_(i)-barx) is

    If barx is the mean of x_1, x_2, x_3, ... .. , x_n , then sum_(i=1)^(n)(x_i-barx)=

    If x= overset(oo)underset(n =0)Sigma a^(n),y= overset(oo)underset(n=0)Sigma b^(n), 0 lt a lt b lt 1, and z=overset(oo)underset(n=0)Sigma ((a)/(b))^(n) , then