Home
Class 14
MATHS
(cot A+tanB)/(cotB+tanA) is :...

`(cot A+tanB)/(cotB+tanA)` is :

A

`tan A cot B`

B

`cot A tan B`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\cot A + \tan B) / (\cot B + \tan A)\), we will follow these steps: ### Step 1: Rewrite cotangent and tangent in terms of sine and cosine We know that: \[ \cot A = \frac{\cos A}{\sin A} \quad \text{and} \quad \tan B = \frac{\sin B}{\cos B} \] Thus, we can rewrite the expression: \[ \cot A + \tan B = \frac{\cos A}{\sin A} + \frac{\sin B}{\cos B} \] ### Step 2: Find a common denominator for the numerator The common denominator for \(\sin A\) and \(\cos B\) is \(\sin A \cos B\). Therefore, we can express the numerator as: \[ \frac{\cos A \cos B + \sin A \sin B}{\sin A \cos B} \] ### Step 3: Rewrite cotangent and tangent for the denominator Similarly, we rewrite \(\cot B\) and \(\tan A\): \[ \cot B + \tan A = \frac{\cos B}{\sin B} + \frac{\sin A}{\cos A} \] Again, we find a common denominator for the denominator: \[ \frac{\cos B \cos A + \sin B \sin A}{\sin B \cos A} \] ### Step 4: Substitute the expressions into the original fraction Now we can substitute the simplified forms of the numerator and denominator back into the original expression: \[ \frac{\frac{\cos A \cos B + \sin A \sin B}{\sin A \cos B}}{\frac{\cos B \cos A + \sin B \sin A}{\sin B \cos A}} \] ### Step 5: Simplify the expression This simplifies to: \[ \frac{\cos A \cos B + \sin A \sin B}{\cos B \cos A + \sin B \sin A} \cdot \frac{\sin B \cos A}{\sin A \cos B} \] Notice that \(\cos A \cos B + \sin A \sin B\) is equal to \(\cos(A - B)\) using the cosine addition formula. Thus, we have: \[ \frac{\sin B \cos A}{\sin A \cos B} \cdot \cos(A - B) \] ### Step 6: Final simplification The final expression can be simplified further, but we can also observe that: \[ \frac{\sin B}{\sin A} \cdot \frac{\cos A}{\cos B} \cdot \cos(A - B) \] This indicates that the original expression simplifies to a function of angles A and B. ### Final Result Thus, the value of \((\cot A + \tan B) / (\cot B + \tan A)\) simplifies to: \[ \frac{\sin B}{\sin A} \cdot \frac{\cos A}{\cos B} \cdot \cos(A - B) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

Prove that (cotA+tanB)/(cotB+tanA)=cotAtanB

Prove that: (tanA + tanB)/(cotA+cotB)=tanAtanB

Knowledge Check

  • Find the values of the following expression. (cotA+tanB)/(cotB+tanA) is

    A
    tanA cotB
    B
    cotA tanB
    C
    1
    D
    none of these
  • If p=(secA - tanA) (secB - tanB) (secC - tanC) = (secA + tanA) (secB + tanB)(secC + tanC) , then value of p is:

    A
    `+-tan A tan B tanC`
    B
    `+-secA secB secC`
    C
    `+-1`
    D
    None of these
  • If A+B+C=180^@ , then (cot A +cotB +cotC)/(cot A cotBcotC) is equal to

    A
    1
    B
    `cot A cos B cot C`
    C
    `-1`
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If cos ecA+cot A=(11)/(2) then tanA is equal to

    If A+B+C=pi , prove that : (cotA+cotB)/(tanA+tanB) + (cotB+cotC)/(tanB+tanC) + (cotC+cotA)/(tanC+tanA) =1

    If A+B+C =180^@ ,then cotA+cotB+cot C)/(cot A cot B cot C) is equal to

    The expression (tanA)/(1-cotA)+(cot A)/(1-tanA) can be written as

    In any triangle ABC , (tanA/2-tanB/2)/(tanA/2+tanB/2) is equal to