Home
Class 12
MATHS
If A =[{:( 2,5,3),(3,1,2),(1,2,1) :}] th...

If A =`[{:( 2,5,3),(3,1,2),(1,2,1) :}]` then `A^(-1) ` is equal to

A

` [{:( (-3)/(4),(1)/(4) ,(7)/(4) ),( (-1)/( 4) ,(-1)/( 4) ,(5)/(4)) ,( ( 5)/( 4) ,(1)/(4) , (-13)/( 4)):}]`

B

` [{:( (3)/(4),(1)/(4) ,(7)/(4) ),( (1)/( 4) ,(-1)/( 4) ,(5)/(4)) ,( ( 5)/( 4) ,(1)/(4) , (-13)/( 4)):}]`

C

` [{:( (-3)/(4),(1)/(4) ,(7)/(4) ),( (-1)/( 4) ,(-1)/( 4) ,(5)/(4)) ,( ( -5)/( 4) ,(1)/(4) , (13)/( 4)):}]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: - \( a = 2, b = 5, c = 3 \) - \( d = 3, e = 1, f = 2 \) - \( g = 1, h = 2, i = 1 \) Calculating the determinant: \[ \text{det}(A) = 2(1 \cdot 1 - 2 \cdot 2) - 5(3 \cdot 1 - 2 \cdot 1) + 3(3 \cdot 2 - 1 \cdot 1) \] \[ = 2(1 - 4) - 5(3 - 2) + 3(6 - 1) \] \[ = 2(-3) - 5(1) + 3(5) \] \[ = -6 - 5 + 15 = 4 \] ### Step 2: Calculate the Cofactor Matrix The cofactor matrix \( C \) is calculated by finding the determinant of the 2x2 submatrices formed by removing the row and column of each element, and applying the checkerboard pattern of signs. Calculating the cofactors: 1. For \( C_{11} = \text{det} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = 1 \cdot 1 - 2 \cdot 2 = 1 - 4 = -3 \) 2. For \( C_{12} = -\text{det} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = -(3 \cdot 1 - 2 \cdot 1) = -(3 - 2) = -1 \) 3. For \( C_{13} = \text{det} \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} = 3 \cdot 2 - 1 \cdot 1 = 6 - 1 = 5 \) 4. For \( C_{21} = -\text{det} \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix} = -(5 \cdot 1 - 3 \cdot 2) = -(5 - 6) = 1 \) 5. For \( C_{22} = \text{det} \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = 2 \cdot 1 - 3 \cdot 1 = 2 - 3 = -1 \) 6. For \( C_{23} = -\text{det} \begin{pmatrix} 2 & 5 \\ 1 & 2 \end{pmatrix} = -(2 \cdot 2 - 5 \cdot 1) = -(4 - 5) = 1 \) 7. For \( C_{31} = \text{det} \begin{pmatrix} 5 & 3 \\ 1 & 2 \end{pmatrix} = 5 \cdot 2 - 3 \cdot 1 = 10 - 3 = 7 \) 8. For \( C_{32} = -\text{det} \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} = -(2 \cdot 2 - 3 \cdot 3) = -(4 - 9) = 5 \) 9. For \( C_{33} = \text{det} \begin{pmatrix} 2 & 5 \\ 3 & 1 \end{pmatrix} = 2 \cdot 1 - 5 \cdot 3 = 2 - 15 = -13 \) Thus, the cofactor matrix \( C \) is: \[ C = \begin{pmatrix} -3 & -1 & 5 \\ 1 & -1 & 1 \\ 7 & 5 & -13 \end{pmatrix} \] ### Step 3: Calculate the Adjoint of A The adjoint of \( A \) is the transpose of the cofactor matrix \( C \): \[ \text{adj}(A) = C^T = \begin{pmatrix} -3 & 1 & 7 \\ -1 & -1 & 5 \\ 5 & 1 & -13 \end{pmatrix} \] ### Step 4: Calculate the Inverse of A The inverse of \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the determinant and adjoint we found: \[ A^{-1} = \frac{1}{4} \begin{pmatrix} -3 & 1 & 7 \\ -1 & -1 & 5 \\ 5 & 1 & -13 \end{pmatrix} \] \[ = \begin{pmatrix} -\frac{3}{4} & \frac{1}{4} & \frac{7}{4} \\ -\frac{1}{4} & -\frac{1}{4} & \frac{5}{4} \\ \frac{5}{4} & \frac{1}{4} & -\frac{13}{4} \end{pmatrix} \] ### Final Answer Thus, the inverse of matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -\frac{3}{4} & \frac{1}{4} & \frac{7}{4} \\ -\frac{1}{4} & -\frac{1}{4} & \frac{5}{4} \\ \frac{5}{4} & \frac{1}{4} & -\frac{13}{4} \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-I)|12 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-II)|13 Videos
  • MATRICES

    FIITJEE|Exercise SOLVED PROBLEM (SUBJECTIVE)|12 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

If A=[[-1,(3)/(2)],[-(1)/(2),(1)/(2)]] then A^(2) is equal to

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

Knowledge Check

  • If A=[(1,2),(3,-5)] , then A^(-1) is equal to

    A
    `[(-5,-2),(-3,1)]`
    B
    `[(5//11,2//11),(3//11,-1//11)]`
    C
    `[(-5//11,-2//11),(-3//11,-1//11)]`
    D
    `[(5,2),(3,-1)]`
  • If A=[(1,2),(3,-5)] , then A^(-1) is equal to

    A
    `[(-5,-2),(-3,1)]`
    B
    `[(5//11,2//11),(3//11,-1//11)]`
    C
    `[(-5//11,-2//11),(-3//11,-1//11)]`
    D
    `[(5,2),(3,-1)]`
  • If A=[(1,-2,1),(2,1,3)] and B=[(2,1),(3,2),(1,1)] then (AB)' is equal to

    A
    `[(-3,10),(-2,7)]`
    B
    `[(1,2),(7//2,2)]`
    C
    `[(2,2),(7//2,1)]`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If P = [{: (2 , -2, -4),(-1, 3, 4),(1 , -2, -3):}] , then P^(5) equals

    If A=[{:(2,7),(1,5):}] then that is A + 3A^(-1) equal to ?

    If A =[(1,2),(3,4)] then A^(2)-5A equals

    If P=[(2, -2, -4),(-1, 3, 4),(1, -2, -3)], then P^(5) equals

    If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is equal to