Home
Class 11
MATHS
If sin alpha=(15)/(17) and cos beta=(12)...

If sin `alpha=(15)/(17)` and cos `beta=(12)/(13)` find the values of:
(i)`"sin"(alpha+beta)`
(ii)` cos(alpha-beta)`
(iii)` "tan"(alpha+beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Given: - \( \sin \alpha = \frac{15}{17} \) - \( \cos \beta = \frac{12}{13} \) ### Step 1: Find \( \cos \alpha \) Using the identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ \cos^2 \alpha = 1 - \sin^2 \alpha \] Substituting the value of \( \sin \alpha \): \[ \cos^2 \alpha = 1 - \left(\frac{15}{17}\right)^2 = 1 - \frac{225}{289} = \frac{64}{289} \] Taking the square root: \[ \cos \alpha = \frac{8}{17} \] ### Step 2: Find \( \sin \beta \) Using the identity \( \sin^2 \beta + \cos^2 \beta = 1 \): \[ \sin^2 \beta = 1 - \cos^2 \beta \] Substituting the value of \( \cos \beta \): \[ \sin^2 \beta = 1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \] Taking the square root: \[ \sin \beta = \frac{5}{13} \] ### Step 3: Calculate \( \sin(\alpha + \beta) \) Using the formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Substituting the known values: \[ \sin(\alpha + \beta) = \left(\frac{15}{17}\right) \left(\frac{12}{13}\right) + \left(\frac{8}{17}\right) \left(\frac{5}{13}\right) \] Calculating: \[ = \frac{180}{221} + \frac{40}{221} = \frac{220}{221} \] ### Step 4: Calculate \( \cos(\alpha - \beta) \) Using the formula: \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] Substituting the known values: \[ \cos(\alpha - \beta) = \left(\frac{8}{17}\right) \left(\frac{12}{13}\right) + \left(\frac{15}{17}\right) \left(\frac{5}{13}\right) \] Calculating: \[ = \frac{96}{221} + \frac{75}{221} = \frac{171}{221} \] ### Step 5: Calculate \( \tan(\alpha + \beta) \) Using the formula: \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \] First, we need to find \( \cos(\alpha + \beta) \): Using the identity \( \cos^2(\alpha + \beta) = 1 - \sin^2(\alpha + \beta) \): \[ \cos^2(\alpha + \beta) = 1 - \left(\frac{220}{221}\right)^2 \] Calculating: \[ = 1 - \frac{48400}{48841} = \frac{441}{48841} \] Taking the square root: \[ \cos(\alpha + \beta) = \frac{21}{221} \] Now substituting into the tangent formula: \[ \tan(\alpha + \beta) = \frac{\frac{220}{221}}{\frac{21}{221}} = \frac{220}{21} \] ### Final Answers: 1. \( \sin(\alpha + \beta) = \frac{220}{221} \) 2. \( \cos(\alpha - \beta) = \frac{171}{221} \) 3. \( \tan(\alpha + \beta) = \frac{220}{21} \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( f)Short Answer type Question|5 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( f)Long Answer type Question-I|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e)Long Answer type Question-I|13 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

If sin alpha=(15)/(17) and cos beta=(12)/(13) find the values of sin(alpha+beta),cos(alpha-beta) and tan(alpha+beta)

If sin alpha=(3)/(5) and cos beta=(9)/(41) find the value of sin(alpha-beta) and cos(alpha+beta)

Knowledge Check

  • sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

    A
    `(12)/(25)`
    B
    `(7)/(25)`
    C
    `(12)/(13)`
    D
    none of these.
  • sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of tan (alpha+beta) is

    A
    `(25)/(7)`
    B
    `(25)/(12)`
    C
    `(25)/(13)`
    D
    `(24)/(7)`
  • If sin(alpha+beta)=(4)/(5), sin(alpha-beta)=(5)/(13) , find the value of tan 2alpha :

    A
    `(16)/(36)`
    B
    `(63)/(16)`
    C
    `(36)/(16)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If cos(alpha+beta)=(5)/(13) and cos(alpha-beta)=(4)/(5) then find the value of tan2 beta

    If 5tan alpha tan beta=3 , then find the value of (cos(alpha+beta))/(cos(alpha-beta))

    If cos alpha=(12)/(13) and sin beta=(4)/(5) , then find sin(alpha+beta) .

    sin alpha + sin beta = a, cos alpha + cos beta = b rArr sin (alpha + beta)

    (sin^(2)alpha-sin^(2)beta)/(sin alpha cos alpha-sin beta cos beta)=tan(alpha+beta)