Home
Class 12
MATHS
The range of function f(x)=[[x]-x]+sin^(...

The range of function `f(x)=[[x]-x]+sin^(2)x`, where [.] denotes the greatest integer function, is.

Answer

Step by step text solution for The range of function f(x)=[[x]-x]+sin^(2)x, where [.] denotes the greatest integer function, is. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The range of the function y=[x^(2)]-[x]^(2)x in[0,2] (where [] denotes the greatest integer function),is

If f(x)=[2x], where [.] denotes the greatest integer function,then

Knowledge Check

  • The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is

    A
    continuous and derivable at x=2
    B
    neither continuous nor derivable at x=2
    C
    continuous but not dervable at x=2
    D
    none of these
  • The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

    A
    [-2,1]
    B
    {-2,-1,0,1}
    C
    {-1,1}
    D
    {-2,0,-1}
  • The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

    A
    `[5,6]`
    B
    `[5,6)`
    C
    `R`
    D
    `I`
  • Similar Questions

    Explore conceptually related problems

    Find the range of the following function: f(x)=ln(x-[x]), where [.] denotes the greatest integer function

    The domain of the function f(x)= ln([[x]]/(5-[x])) where [ . ] denotes the greatest integer function is

    The period of the function f(x)=sin(x+3-[x+3]) where [] denotes the greatest integer function

    f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

    The function f(x)=[x], where [x] denotes the greatest integer function,is continuous at