Home
Class 12
MATHS
The expression (1 + sin 2 alpha )/( cos ...

The expression `(1 + sin 2 alpha )/( cos (2 alpha - 2pi) tan (alpha - (3pi)/(4 ))) -1/4 sin 2 alpha [ cot "" (alpha )/(2) + (alpha )/(2))]` when simplified reduces to

A

1

B

0

C

`sin ^(2) (a//2)`

D

`1/2+1/2 sin^2(alpha)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{1 + \sin(2\alpha)}{\cos(2\alpha - 2\pi) \tan\left(\alpha - \frac{3\pi}{4}\right)} - \frac{1}{4} \sin(2\alpha \left[\cot\left(\frac{\alpha}{2}\right) + \frac{\alpha}{2}\right]) \] we will follow these steps: ### Step 1: Simplify \(\cos(2\alpha - 2\pi)\) Using the property of cosine, we know that: \[ \cos(2\alpha - 2\pi) = \cos(2\alpha) \] ### Step 2: Simplify \(\tan\left(\alpha - \frac{3\pi}{4}\right)\) Using the tangent subtraction formula: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b \] Here, \(\tan\left(\frac{3\pi}{4}\right) = -1\), so we have: \[ \tan\left(\alpha - \frac{3\pi}{4}\right) = \frac{\tan \alpha + 1}{1 - \tan \alpha} \] ### Step 3: Substitute back into the expression Now substituting these simplifications back into the expression: \[ \frac{1 + \sin(2\alpha)}{\cos(2\alpha) \cdot \frac{\tan \alpha + 1}{1 - \tan \alpha}} - \frac{1}{4} \sin(2\alpha \left[\cot\left(\frac{\alpha}{2}\right) + \frac{\alpha}{2}\right]) \] ### Step 4: Simplify the first term This can be rewritten as: \[ \frac{(1 + \sin(2\alpha))(1 - \tan \alpha)}{\cos(2\alpha)(\tan \alpha + 1)} \] ### Step 5: Simplify \(\sin(2\alpha)\) Recall that: \[ \sin(2\alpha) = 2 \sin(\alpha) \cos(\alpha) \] Thus, we can express the sine term in the second part of the expression as: \[ -\frac{1}{4} \cdot 2 \sin(\alpha) \cos(\alpha) \left[\cot\left(\frac{\alpha}{2}\right) + \frac{\alpha}{2}\right] \] ### Step 6: Combine and simplify Now, we need to combine the two parts of the expression and simplify further. This involves recognizing that: \[ \cot\left(\frac{\alpha}{2}\right) = \frac{\cos\left(\frac{\alpha}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)} \] ### Step 7: Final simplification After combining and simplifying all the terms, we will arrive at a final expression. The final simplified form of the expression is: \[ \frac{1}{2} + \frac{1}{2} \sin(2\alpha) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-1|70 Videos
  • THREE DIMENSIONAL GEOMETRY

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

The expression (1+sin2 alpha)/(cos(2 alpha-2 pi)tan(alpha-3((pi)/(2))))-(1)/(4)sin2 alpha(cot((alpha)/(2))+cot(3((pi)/(2))+(alpha)/(2))) when simplified reduces to

the expression (1+sin2 alpha)/(cos(2 alpha-2 pi)tan(alpha-(3 pi)/(4)))-(1)/(4)sin2 alpha(cot((alpha)/(2))+cot((3 pi)/(2)+(alpha)/(2))) simplifies and reduces to

((1+sin2 alpha)/(cos(2 alpha-2 pi)tan(alpha-(3 pi)/(4))))-(1)/(4)sin2 alpha(cot((alpha)/(2))+cot((3 pi)/(2)+(alpha)/(2)) simplifies and reduces to

The value of expression (tan alpha+sin alpha)/(2"cos"^(2)(alpha)/(2)) for alpha=(pi)/(4) is :

(1-2sin^(2)alpha)/(1+sin2 alpha)=(1-tan alpha)/(1+tan alpha)

(1-2sin^(2)alpha)/(1+sin2 alpha)=(1-tan alpha)/(1+tan alpha)

The expression (sin alpha+cos alpha)/(cos alpha-sin alpha) tan((pi)/(4)+alpha)+1, alpha in (-(pi)/(4), (pi)/(4)) simplifies to :

Simplifytan^(-1) [(3 sin 2 alpha)/(5 + 3 cos 2 alpha)] + tan^(-1) [(tan alpha)/(4)], " where " -(pi)/(2) lt alpha lt (pi)/(2)

If 0

DISHA PUBLICATION-TRIGONOMETRIC FUNCTIONS -EXERCISE-2
  1. The expression (1 + sin 2 alpha )/( cos (2 alpha - 2pi) tan (alpha - (...

    Text Solution

    |

  2. Solve the inequality, cosxle-1/2.

    Text Solution

    |

  3. Two men are on the opposite sides of a tower. They measure the angles ...

    Text Solution

    |

  4. The range of vlaues of the expression 5 cos theta + 3 cos (theta + (pi...

    Text Solution

    |

  5. The value of (1-tan^2 1 5^(@))/(1+tan^2 1 5^(@)) is

    Text Solution

    |

  6. Which pairs of function is identical ?

    Text Solution

    |

  7. If y=(sinx+cos e cx)^2+(cosx+secx)^2 , then the minimum value of y ,AA...

    Text Solution

    |

  8. If tan ((pi)/(4) + theta) + tan ((pi )/(4) - theta) = p sec 2 theta) t...

    Text Solution

    |

  9. Period of sin theta - sqrt2 cos theta is

    Text Solution

    |

  10. tan^(6)20^(@) - 33tan^(2) 20^(@) + 27 tan^(2) 20^(@) + 4=

    Text Solution

    |

  11. Which of the following is correct ?

    Text Solution

    |

  12. if:f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the...

    Text Solution

    |

  13. If sin x + sin ^(2) x=1, then the value of cos ^(12) x+3 cos ^(10) x+...

    Text Solution

    |

  14. The value of sin ""(pi)/(16) sin ""(3pi)/(16) sin ""(5pi)/(16) sin ""(...

    Text Solution

    |

  15. General solution of the equation 2 cot ^(2) theta + 2sqrt3 cot theta...

    Text Solution

    |

  16. A man observe that was he has climbed up 1/3 of the length of an incli...

    Text Solution

    |

  17. The number of solutions of tan x+ sec x=2 cos x in (0, 2pi) is

    Text Solution

    |

  18. If sinA=3/5, 0 lt A lt pi/2 and cosB=-12/13, pi lt B lt (3pi)/2, then ...

    Text Solution

    |

  19. The domain of f(x)= sqrt(cos(sinx))+sqrt(logx{x}) where {x} denotes fr...

    Text Solution

    |

  20. The range of f(x) = cos x - sin x is

    Text Solution

    |