Home
Class 12
MATHS
The expression (1 + sin 2 alpha )/( cos ...

The expression `(1 + sin 2 alpha )/( cos (2 alpha - 2pi) tan (alpha - (3pi)/(4 ))) -1/4 sin 2 alpha [ cot "" (alpha )/(2) + (alpha )/(2))]` when simplified reduces to

A

1

B

0

C

`sin ^(2) (a//2)`

D

`1/2+1/2 sin^2(alpha)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{1 + \sin(2\alpha)}{\cos(2\alpha - 2\pi) \tan\left(\alpha - \frac{3\pi}{4}\right)} - \frac{1}{4} \sin(2\alpha \left[\cot\left(\frac{\alpha}{2}\right) + \frac{\alpha}{2}\right]) \] we will follow these steps: ### Step 1: Simplify \(\cos(2\alpha - 2\pi)\) Using the property of cosine, we know that: \[ \cos(2\alpha - 2\pi) = \cos(2\alpha) \] ### Step 2: Simplify \(\tan\left(\alpha - \frac{3\pi}{4}\right)\) Using the tangent subtraction formula: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b \] Here, \(\tan\left(\frac{3\pi}{4}\right) = -1\), so we have: \[ \tan\left(\alpha - \frac{3\pi}{4}\right) = \frac{\tan \alpha + 1}{1 - \tan \alpha} \] ### Step 3: Substitute back into the expression Now substituting these simplifications back into the expression: \[ \frac{1 + \sin(2\alpha)}{\cos(2\alpha) \cdot \frac{\tan \alpha + 1}{1 - \tan \alpha}} - \frac{1}{4} \sin(2\alpha \left[\cot\left(\frac{\alpha}{2}\right) + \frac{\alpha}{2}\right]) \] ### Step 4: Simplify the first term This can be rewritten as: \[ \frac{(1 + \sin(2\alpha))(1 - \tan \alpha)}{\cos(2\alpha)(\tan \alpha + 1)} \] ### Step 5: Simplify \(\sin(2\alpha)\) Recall that: \[ \sin(2\alpha) = 2 \sin(\alpha) \cos(\alpha) \] Thus, we can express the sine term in the second part of the expression as: \[ -\frac{1}{4} \cdot 2 \sin(\alpha) \cos(\alpha) \left[\cot\left(\frac{\alpha}{2}\right) + \frac{\alpha}{2}\right] \] ### Step 6: Combine and simplify Now, we need to combine the two parts of the expression and simplify further. This involves recognizing that: \[ \cot\left(\frac{\alpha}{2}\right) = \frac{\cos\left(\frac{\alpha}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)} \] ### Step 7: Final simplification After combining and simplifying all the terms, we will arrive at a final expression. The final simplified form of the expression is: \[ \frac{1}{2} + \frac{1}{2} \sin(2\alpha) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-1|70 Videos
  • THREE DIMENSIONAL GEOMETRY

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

The expression (1+sin2 alpha)/(cos(2 alpha-2 pi)tan(alpha-3((pi)/(2))))-(1)/(4)sin2 alpha(cot((alpha)/(2))+cot(3((pi)/(2))+(alpha)/(2))) when simplified reduces to

the expression (1+sin2 alpha)/(cos(2 alpha-2 pi)tan(alpha-(3 pi)/(4)))-(1)/(4)sin2 alpha(cot((alpha)/(2))+cot((3 pi)/(2)+(alpha)/(2))) simplifies and reduces to

Knowledge Check

  • The value of expression (1+ sin 2 alpha)/(cos (2 alpha -2pi) tan (alpha -(3pi)/(4)))- 1/2 sin 2 alpha (cot ""(alpha)/(2) + cot ((3pi)/(2)+(alpha)/(2))) is

    A
    0
    B
    1
    C
    `sin ^(2) "" (alpha)/(2)`
    D
    `sin ^(2) alpha`
  • The expression (sin alpha+cos alpha)/(cos alpha-sin alpha) tan((pi)/(4)+alpha)+1, alpha in (-(pi)/(4), (pi)/(4)) simplifies to :

    A
    `"cosec"^(2)((pi)/(4)-alpha)`
    B
    `sec^(2)((pi)/(4)-alpha)`
    C
    `tan^(2)((pi)/(4)-alpha)`
    D
    `cot^(2)((pi)/(4)-alpha)`
  • Similar Questions

    Explore conceptually related problems

    ((1+sin2 alpha)/(cos(2 alpha-2 pi)tan(alpha-(3 pi)/(4))))-(1)/(4)sin2 alpha(cot((alpha)/(2))+cot((3 pi)/(2)+(alpha)/(2)) simplifies and reduces to

    The value of expression (tan alpha+sin alpha)/(2"cos"^(2)(alpha)/(2)) for alpha=(pi)/(4) is :

    (1-2sin^(2)alpha)/(1+sin2 alpha)=(1-tan alpha)/(1+tan alpha)

    (1-2sin^(2)alpha)/(1+sin2 alpha)=(1-tan alpha)/(1+tan alpha)

    Simplifytan^(-1) [(3 sin 2 alpha)/(5 + 3 cos 2 alpha)] + tan^(-1) [(tan alpha)/(4)], " where " -(pi)/(2) lt alpha lt (pi)/(2)

    If 0