Home
Class 12
MATHS
If a(n) = ( log(e ) 3)^(n) sum(k!(n-k)!)...

If `a_(n) = ( log_(e ) 3)^(n) sum_(k!(n-k)!)^(k^(2)) ` then `a_(1) + a_(2) +a_(3) +"...."oo` is equal to

A

`3 log_(e ) 9`

B

`9 log_(e ) 3`

C

`9 log_(e ) 3 ( log_(e )3+1)`

D

`( log_(e ) 9)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-1 (CONCEPT BUILDER )|60 Videos
  • APPLICATION OF INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2: CONCEPT BUILDER|30 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos

Similar Questions

Explore conceptually related problems

Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2

If a_(n) = 3-4n , then what is a_(1)+a_(2)+a_(3)+…+a_(n) equal to ?

Knowledge Check

  • If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

    A
    A.P.
    B
    G.P.
    C
    H.P.
    D
    A.G.P.
  • If a_(1), a_(2),…,a_(n) are n non-zero real numbers such that (a_(1)^(2) + a_(2)^(2) + ... + a_(n-1)^(2)) (a_(2)^(2)+ a_(3)^(2) + ....+ a_(n)^(2)), le (a_(1)a_(2) + a_(2) a_(3) + ....+....+ a_(n-1) a_(n))^(2) then a_(1), a_(2),…, a_(n) are in

    A
    A.P.
    B
    G.P.
    C
    H.P.
    D
    none of these
  • If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

    A
    `3^(n + 1)`
    B
    `3^(n)`
    C
    `3^(n - 1)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If a_(1),a_(2),a_(3)...a_(2n-1) are in H.P.then sum_(k=1)^(2n)(-1)^(k)(a_(k)+a_(k+1))/(a_(k)-a_(k+1)) is equal to

    If log (1 + x + x^(2)) = a_(1)x+ a_(2)x^(2) + a_(3)x^(3) + ... then a_(n) is equal to when n = 3k and when n ne 3k

    Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is

    Let (1+x^(2))^(2) (1+x)^(n) +sum_(k=0)^(n+4) a_(k)x^(k) If a_(1),a_(2) and a_(3) are in arithmetic progression, then n is

    If a_(a), a _(2), a _(3),…., a_(n) are in H.P. and f (k)=sum _(r =1) ^(n) a_(r)-a_(k) then (a_(1))/(f(1)), (a_(2))/(f (2)), (a_(3))/(f (n)) are in :