Home
Class 12
MATHS
The sum of the infinite series (1)/(2)...

The sum of the infinite series
`(1)/(2) ((1)/(3) + (1)/(4)) - (1)/(4)((1)/(3^(2)) + (1)/(4^(2))) + (1)/(6) ((1)/(3^(3)) + (1)/(4^(3)))`- ...is equal to

A

`(1)/(2) log 2`

B

`log (3)/(5)`

C

`log(5)/(3)`

D

`(1)/(2) log(5/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the infinite series \[ S = \frac{1}{2} \left( \frac{1}{3} + \frac{1}{4} \right) - \frac{1}{4} \left( \frac{1}{3^2} + \frac{1}{4^2} \right) + \frac{1}{6} \left( \frac{1}{3^3} + \frac{1}{4^3} \right) - \ldots \] we can analyze the series term by term. ### Step 1: Identify the pattern in the series The series can be rewritten as: \[ S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} \left( \frac{1}{3^n} + \frac{1}{4^n} \right) \] ### Step 2: Separate the series We can separate the series into two parts: \[ S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} \frac{1}{3^n} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} \frac{1}{4^n} \] Let’s denote these two sums as \( S_1 \) and \( S_2 \): \[ S_1 = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} \frac{1}{3^n} \] \[ S_2 = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} \frac{1}{4^n} \] ### Step 3: Evaluate \( S_1 \) and \( S_2 \) Using the formula for the sum of an alternating series, we can evaluate \( S_1 \) and \( S_2 \): The general formula for the sum of the series is: \[ \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)} = -\ln(1-x) + \frac{x}{1-x} \] For \( S_1 \) with \( x = \frac{1}{3} \): \[ S_1 = -\ln\left(1 - \frac{1}{3}\right) + \frac{\frac{1}{3}}{1 - \frac{1}{3}} = -\ln\left(\frac{2}{3}\right) + \frac{1/3}{2/3} = -\ln\left(\frac{2}{3}\right) + \frac{1}{2} \] For \( S_2 \) with \( x = \frac{1}{4} \): \[ S_2 = -\ln\left(1 - \frac{1}{4}\right) + \frac{\frac{1}{4}}{1 - \frac{1}{4}} = -\ln\left(\frac{3}{4}\right) + \frac{1/4}{3/4} = -\ln\left(\frac{3}{4}\right) + \frac{1}{3} \] ### Step 4: Combine \( S_1 \) and \( S_2 \) Now, we combine \( S_1 \) and \( S_2 \): \[ S = S_1 + S_2 = \left(-\ln\left(\frac{2}{3}\right) + \frac{1}{2}\right) + \left(-\ln\left(\frac{3}{4}\right) + \frac{1}{3}\right) \] ### Step 5: Simplify Combine the logarithmic terms: \[ S = -\ln\left(\frac{2}{3} \cdot \frac{3}{4}\right) + \left(\frac{1}{2} + \frac{1}{3}\right) \] Calculating \( \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} \). Now simplify the logarithmic term: \[ \frac{2}{3} \cdot \frac{3}{4} = \frac{1}{2} \Rightarrow -\ln\left(\frac{1}{2}\right) = \ln(2) \] Thus, we have: \[ S = \ln(2) + \frac{5}{6} \] ### Final Answer The sum of the infinite series is: \[ S = \frac{5}{6} + \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • SEQUENCES AND SERIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • RELATIONS AND FUNCTIONS-2

    DISHA PUBLICATION|Exercise EXERCISE-2: CONCEPT APPLICATOR|30 Videos
  • SETS

    DISHA PUBLICATION|Exercise EXERCISE-2 : CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

Sum of the series (1)/(2)((1)/(2)+(1)/(3))-(1)/(4)((1)/(2^(2))+(1)/(3^(2)))+(1)/(6)((1)/(2^(3))+(1)/(3^(3)))+...oo

The sum of the first 35 terms of the series (1)/(2) + (1)/(3) -(1)/(4) -(1)/(2) -(1)/(3) +(1)/(4) +(1)/(2) + (1)/(3) -(1)/(4)

The sum of the series (1)/(1.2)-(1)/(2.3)+(1)/(3.4)-(1)/(4.5)+... is

The sum of the infite series (1/3)^(2)+1/3(1/3)^(4)+1/5(1/3)^(6) +……..is

DISHA PUBLICATION-SEQUENCES AND SERIES -EXERCISE -1 : Concept Builder
  1. If 1/1^4+1/2^4+1/3^4+...+oo=pi^4/90, then 1/1^4+1/3^4+1/5^4+...+oo=

    Text Solution

    |

  2. If x, y and z are pth, gth and rth terms respectively of an A.P and al...

    Text Solution

    |

  3. The AM, HM and GM between two number are (144)/(15), 15 and 12, but no...

    Text Solution

    |

  4. If a1, a2, a3, an are in H.P. and f(k)=(sum(r=1)^n ar)-ak ,t h e n (a...

    Text Solution

    |

  5. If the p^(th), q^(th) and r^(th) terms of a GP. Are again in G.P., the...

    Text Solution

    |

  6. If x gt 0, (x^(n))/(1+x+x^(2)+...+x^(2n)) is

    Text Solution

    |

  7. If a + b + c = 3 and a > 0, b>0,c>0 the greatest value of a^2b^3c^2

    Text Solution

    |

  8. If 1/(b-a)+1/(b-c)=1/a+1/c , then a,b,c are in (A) AP (B) GP (C) ...

    Text Solution

    |

  9. If x ,y ,z are real and 4x^2+9y^2+16 z^2-6x y-12 y z-8z x=0,t h e nx ,...

    Text Solution

    |

  10. If A and G be the AM and GM between two positive no.'s ; then the numb...

    Text Solution

    |

  11. Consider the sequence of numbers 121, 12321, 1234321,... Each term in ...

    Text Solution

    |

  12. The sum of i-2-3i+4 up to 100 terms, where i=sqrt(-1) is 50(1-i) b. 2...

    Text Solution

    |

  13. In a geometric progression with first term a and common ratio r, what ...

    Text Solution

    |

  14. Find the sum of n terms of the series 1+4/5+7/(5^2)+10+5^3+dot

    Text Solution

    |

  15. If the sum to infinty of the series , 1+4x+7x^(2)+10x^(3)+…., is (35)/...

    Text Solution

    |

  16. the sum3/1^2+5/(1^2+2^2)+7/(1^2+2^2+3^2)+....... upto 11 terms

    Text Solution

    |

  17. The sum of the infinite series (1)/(2) ((1)/(3) + (1)/(4)) - (1)/(4)...

    Text Solution

    |

  18. The sum of the series : (2)^(2) + 2(4)^(2) + 3(6)^(2)+.... Upon 10 ter...

    Text Solution

    |

  19. Let H(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n), then the sum to n terms...

    Text Solution

    |

  20. For a positive integer n let a(n)=1+1/2+1/3+1/4+1/((2^n)-1)dot Then a(...

    Text Solution

    |