Home
Class 12
MATHS
The sum of the infinite series (1)/(2)...

The sum of the infinite series
`(1)/(2) ((1)/(3) + (1)/(4)) - (1)/(4)((1)/(3^(2)) + (1)/(4^(2))) + (1)/(6) ((1)/(3^(3)) + (1)/(4^(3)))`- ...is equal to

A

`(1)/(2) log 2`

B

`log (3)/(5)`

C

`log(5)/(3)`

D

`(1)/(2) log(5/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the infinite series \[ S = \frac{1}{2} \left( \frac{1}{3} + \frac{1}{4} \right) - \frac{1}{4} \left( \frac{1}{3^2} + \frac{1}{4^2} \right) + \frac{1}{6} \left( \frac{1}{3^3} + \frac{1}{4^3} \right) - \ldots \] we can analyze the series term by term. ### Step 1: Identify the pattern in the series The series can be rewritten as: \[ S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} \left( \frac{1}{3^n} + \frac{1}{4^n} \right) \] ### Step 2: Separate the series We can separate the series into two parts: \[ S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} \frac{1}{3^n} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} \frac{1}{4^n} \] Let’s denote these two sums as \( S_1 \) and \( S_2 \): \[ S_1 = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} \frac{1}{3^n} \] \[ S_2 = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} \frac{1}{4^n} \] ### Step 3: Evaluate \( S_1 \) and \( S_2 \) Using the formula for the sum of an alternating series, we can evaluate \( S_1 \) and \( S_2 \): The general formula for the sum of the series is: \[ \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)} = -\ln(1-x) + \frac{x}{1-x} \] For \( S_1 \) with \( x = \frac{1}{3} \): \[ S_1 = -\ln\left(1 - \frac{1}{3}\right) + \frac{\frac{1}{3}}{1 - \frac{1}{3}} = -\ln\left(\frac{2}{3}\right) + \frac{1/3}{2/3} = -\ln\left(\frac{2}{3}\right) + \frac{1}{2} \] For \( S_2 \) with \( x = \frac{1}{4} \): \[ S_2 = -\ln\left(1 - \frac{1}{4}\right) + \frac{\frac{1}{4}}{1 - \frac{1}{4}} = -\ln\left(\frac{3}{4}\right) + \frac{1/4}{3/4} = -\ln\left(\frac{3}{4}\right) + \frac{1}{3} \] ### Step 4: Combine \( S_1 \) and \( S_2 \) Now, we combine \( S_1 \) and \( S_2 \): \[ S = S_1 + S_2 = \left(-\ln\left(\frac{2}{3}\right) + \frac{1}{2}\right) + \left(-\ln\left(\frac{3}{4}\right) + \frac{1}{3}\right) \] ### Step 5: Simplify Combine the logarithmic terms: \[ S = -\ln\left(\frac{2}{3} \cdot \frac{3}{4}\right) + \left(\frac{1}{2} + \frac{1}{3}\right) \] Calculating \( \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} \). Now simplify the logarithmic term: \[ \frac{2}{3} \cdot \frac{3}{4} = \frac{1}{2} \Rightarrow -\ln\left(\frac{1}{2}\right) = \ln(2) \] Thus, we have: \[ S = \ln(2) + \frac{5}{6} \] ### Final Answer The sum of the infinite series is: \[ S = \frac{5}{6} + \ln(2) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • SEQUENCES AND SERIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • RELATIONS AND FUNCTIONS-2

    DISHA PUBLICATION|Exercise EXERCISE-2: CONCEPT APPLICATOR|30 Videos
  • SETS

    DISHA PUBLICATION|Exercise EXERCISE-2 : CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

Sum of the series (1)/(2)((1)/(2)+(1)/(3))-(1)/(4)((1)/(2^(2))+(1)/(3^(2)))+(1)/(6)((1)/(2^(3))+(1)/(3^(3)))+...oo

The sum of the series (1)/(1.2)-(1)/(2.3)+(1)/(3.4)-(1)/(4.5)+... is

Knowledge Check

  • The sum of the series (1)/(2!) - (1)/(3!) + (1)/(4!) + ... is

    A
    e
    B
    `e^(-1//2)`
    C
    `e^(-2)`
    D
    `e^(-1)`
  • The sum of the series 1 + ((1)/(2) + (1)/(3)) (1)/(4) + ((1)/(4) + (1)/(5)) (1)/(4^(2)) + ((1)/(6) + (1)/(7)) (1)/(4^(3)) + ...oo

    A
    `log sqrt(6)`
    B
    `log sqrt(3)`
    C
    `log sqrt(12)`
    D
    none
  • The sum of the first 35 terms of the series (1)/(2) + (1)/(3) -(1)/(4) -(1)/(2) -(1)/(3) +(1)/(4) +(1)/(2) + (1)/(3) -(1)/(4)

    A
    `-(1)/(2)`
    B
    `-(1)/(4)`
    C
    `(1)/(4)`
    D
    0
  • Similar Questions

    Explore conceptually related problems

    The sum of the infite series (1/3)^(2)+1/3(1/3)^(4)+1/5(1/3)^(6) +……..is

    (1)/(2) + {4 (3)/(4) - (4 (1)/(6) - 2 (1)/(3))} is equal to

    The sum of the series (1)/(1.3) + (1)/(2.5) +(1)/(3.7) + (1)/(4.9) + ...oo

    The sum of the infinite series (1/3)^(2)+1/3(1/3)^(4)+1/5(1/3)^(6)+ . . . is

    The sum of the infinite series 1+(1)/(2!)+(1*3)/(4!)+(1*3*5)/(6!)+ . . .. is