Home
Class 14
MATHS
The square root of ( (sqrt3 + sqrt2)/(s...

The square root of ` ( (sqrt3 + sqrt2)/(sqrt3 - sqrt2))` is

A

`sqrt3 + sqrt2`

B

`sqrt3 - sqrt2`

C

`sqrt3 pm sqrt3`

D

`sqrt2 - sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the square root of \(\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\), we will follow these steps: ### Step 1: Write the expression We start with the expression: \[ \sqrt{\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}} \] ### Step 2: Rationalize the denominator To simplify the expression, we will rationalize the denominator. We do this by multiplying the numerator and the denominator by the conjugate of the denominator, which is \(\sqrt{3} + \sqrt{2}\): \[ \frac{(\sqrt{3} + \sqrt{2})(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} \] ### Step 3: Simplify the denominator Using the difference of squares formula \(a^2 - b^2\), we can simplify the denominator: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] ### Step 4: Simplify the numerator Now, we simplify the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = (\sqrt{3})^2 + 2(\sqrt{3})(\sqrt{2}) + (\sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6} \] ### Step 5: Combine the results Now, we can write the entire expression as: \[ \frac{5 + 2\sqrt{6}}{1} = 5 + 2\sqrt{6} \] ### Step 6: Take the square root Finally, we take the square root of the simplified expression: \[ \sqrt{5 + 2\sqrt{6}} \] ### Final Answer Thus, the square root of \(\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\) is: \[ \sqrt{5 + 2\sqrt{6}} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

(2sqrt3 + sqrt2)(2sqrt3-sqrt2)

3/(sqrt3-sqrt2)=asqrt3-bsqrt2

Knowledge Check

  • The square root of ((sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))) is

    A
    `sqrt(3)+sqrt(2)`
    B
    `sqrt(3)-sqrt(2)`
    C
    `sqrt(2)+sqrt(3)`
    D
    `sqrt(2)-sqrt(3)`
  • The square root of (2 + sqrt(3))/(2) is

    A
    A) `+- (1)/(sqrt(2)) (sqrt(3) + 1)`
    B
    B) `+- (1)/(2) (sqrt(3) - 2)`
    C
    C) None of these
    D
    D) `+- (1)/(2) (sqrt(3) - 1)`
  • The square root of (7 + 3sqrt5) (7 - 3sqrt5) is :

    A
    4
    B
    `sqrt5`
    C
    `3sqrt5`
    D
    2
  • Similar Questions

    Explore conceptually related problems

    Solve (1/(sqrt3+sqrt2))+(1/(sqrt3-sqrt2))

    (sqrt2 +1)/(sqrt3)

    If x = (sqrt3 - sqrt2)/( sqrt3 + sqrt2) and y = ( sqrt3 + sqrt2)/( sqrt3 - sqrt2), then the value x ^(3) + y^(2) is :

    If a = ( sqrt3 - sqrt2 )/( sqrt3 + sqrt2) and b = ( sqrt3 + sqrt2)/( sqrt3 - sqrt2), then the value of (a ^(2))/(b) + (b ^(2))/(a) is:

    If a= (sqrt3 - sqrt2)/(sqrt3 + sqrt2), b = (sqrt3 + sqrt2)/(sqrt3 - sqrt2) then what is the value of a^2/b+b^2/a ?