Home
Class 11
MATHS
Find the sum to n terms of the following...

Find the sum to n terms of the following (1-2) series:
(i) `1+3/2+5/(2^(2))+7/(2^(3))+`…………..
(ii) `1+2/3+3/(3^(2))+4/(3^(3))+`…………

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum to n terms of the given series, we will analyze each series separately and apply the formula for the sum of an arithmetic-geometric progression. ### (i) Series: \(1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} + \ldots\) 1. **Identify the first term (a)**: - The first term \(a = 1\). 2. **Identify the common difference (d)**: - The numerators form an arithmetic progression: \(1, 3, 5, 7, \ldots\) - The common difference \(d = 2\). 3. **Identify the common ratio (r)**: - The denominators form a geometric progression: \(1, 2, 2^2, 2^3, \ldots\) - The common ratio \(r = \frac{1}{2}\). 4. **Apply the formula for the sum of n terms (S_n)**: \[ S_n = \frac{a}{1 - r} + \frac{d \cdot r}{(1 - r^2)} \cdot (1 - r^{n-1}) \] Plugging in the values: \[ S_n = \frac{1}{1 - \frac{1}{2}} + \frac{2 \cdot \frac{1}{2}}{(1 - \left(\frac{1}{2}\right)^2)} \cdot (1 - \left(\frac{1}{2}\right)^{n-1}) \] 5. **Simplify the expression**: - The first term simplifies to: \[ \frac{1}{\frac{1}{2}} = 2 \] - The second term simplifies as follows: \[ \frac{2 \cdot \frac{1}{2}}{1 - \frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{4}{3} \] Thus, we have: \[ S_n = 2 + \frac{4}{3} \cdot (1 - \frac{1}{2^{n-1}}) \] 6. **Final expression for S_n**: \[ S_n = 2 + \frac{4}{3} - \frac{4}{3 \cdot 2^{n-1}} = \frac{6}{3} + \frac{4}{3} - \frac{4}{3 \cdot 2^{n-1}} = \frac{10}{3} - \frac{4}{3 \cdot 2^{n-1}} \] ### (ii) Series: \(1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \ldots\) 1. **Identify the first term (a)**: - The first term \(a = 1\). 2. **Identify the common difference (d)**: - The numerators form an arithmetic progression: \(1, 2, 3, 4, \ldots\) - The common difference \(d = 1\). 3. **Identify the common ratio (r)**: - The denominators form a geometric progression: \(1, 3, 3^2, 3^3, \ldots\) - The common ratio \(r = \frac{1}{3}\). 4. **Apply the formula for the sum of n terms (S_n)**: \[ S_n = \frac{1}{1 - \frac{1}{3}} + \frac{1 \cdot \frac{1}{3}}{(1 - \left(\frac{1}{3}\right)^2)} \cdot (1 - \left(\frac{1}{3}\right)^{n-1}) \] Plugging in the values: \[ S_n = \frac{1}{\frac{2}{3}} + \frac{\frac{1}{3}}{(1 - \frac{1}{9})} \cdot (1 - \left(\frac{1}{3}\right)^{n-1}) \] 5. **Simplify the expression**: - The first term simplifies to: \[ \frac{3}{2} \] - The second term simplifies as follows: \[ \frac{\frac{1}{3}}{\frac{8}{9}} = \frac{3}{8} \] Thus, we have: \[ S_n = \frac{3}{2} + \frac{3}{8} \cdot (1 - \frac{1}{3^{n-1}}) \] 6. **Final expression for S_n**: \[ S_n = \frac{3}{2} + \frac{3}{8} - \frac{3}{8 \cdot 3^{n-1}} = \frac{12}{8} + \frac{3}{8} - \frac{3}{8 \cdot 3^{n-1}} = \frac{15}{8} - \frac{3}{8 \cdot 3^{n-1}} \] ### Summary of Results: - For series (i): \[ S_n = \frac{10}{3} - \frac{4}{3 \cdot 2^{n-1}} \] - For series (ii): \[ S_n = \frac{15}{8} - \frac{3}{8 \cdot 3^{n-1}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (m) LATQ|10 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise ADDITIONAL QUESTIONS|3 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (j) LATQ|11 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

Find the sum to n terms of the series 1.2.3+2.3.4+3.4.5+…

Find the sum of the following series: 2.3+3.4+ ……….to n terms

Knowledge Check

  • The sum to n terms of the infinite series 1.3^(20 + 2.5^(2) + 3.7^(2) + …. Is

    A
    `(n)/(6) (n+1)(6n^(2) +14n+7)`
    B
    `(n)/(6) (n+1)(2n +1)(3n+1)`
    C
    `4n^(3) + 4n^(2) + n`
    D
    None of the above
  • Find the sum to n terms of the series + (1+2) + (1+2+3) + (1+2+ 3+ 4) + ….:

    A
    `(n(n+1)(2n+1))/(6)`
    B
    `(n(n+1)(n+2))/(6)`
    C
    `(n(n+1)(n+2))/(12)`
    D
    `(n(n+1))/(2)`
  • Similar Questions

    Explore conceptually related problems

    Find the sum to n terms of the series 1 *2 *3 + 2*4*6 + 3*6*9+...

    Find the sum to n terms of the series: (3)/(1^(2).2^(2))+(5)/(2^(2).3^(2))+(7)/(3^(2).4^(2))+

    Find the sum to n terms of the series 3/(1^(2)xx2^(2))+5/(2^(2)xx3^(2))+7/(3^(2)xx4^(2))+

    Sum of the following series 1+(2)/(2)+(3)/(2^(2))+(4)/(2^(3))+... to n terms

    Find the sum to n terms of the series: 1+2x+3x^(2)+4x^(3)+......

    Find the sum of n terms of the series 1.2^(2)+2.3^(2)+3.4^(2)+