Home
Class 14
MATHS
((3pi)/(5)) radians is equal to...

`((3pi)/(5))` radians is equal to

A

`100 ^@`

B

`120^@`

C

`108^@`

D

`180^@`

Text Solution

AI Generated Solution

The correct Answer is:
To convert the angle from radians to degrees, we can use the conversion factor that \(1 \text{ radian} = \frac{180}{\pi} \text{ degrees}\). **Step 1: Write down the given angle in radians.** \[ \text{Given angle} = \frac{3\pi}{5} \text{ radians} \] **Step 2: Use the conversion factor to convert radians to degrees.** \[ \text{Degrees} = \text{Radians} \times \frac{180}{\pi} \] **Step 3: Substitute the given angle into the conversion formula.** \[ \text{Degrees} = \frac{3\pi}{5} \times \frac{180}{\pi} \] **Step 4: Simplify the expression.** - The \(\pi\) in the numerator and denominator cancels out: \[ \text{Degrees} = \frac{3 \times 180}{5} \] **Step 5: Calculate \(180 \div 5\).** \[ 180 \div 5 = 36 \] **Step 6: Multiply the result by 3.** \[ \text{Degrees} = 3 \times 36 = 108 \] **Final Result:** \[ \frac{3\pi}{5} \text{ radians} = 108 \text{ degrees} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (101 pi)/(9) radians is equal to x^(@) then x is

" If "(101 pi)/(9)" radians is equal to "x^(0)" then "x" is "

If (101 pi)/(9) radians is equal to x^(0) then x is 2020 2021 2022 2019

(-13 pi)/(6) radians =

The value of cos((pi)/(5))+cos((13 pi)/(5)) is equal to

tan ((pi)/(4)+theta) tan ((3pi)/( 4) + theta) is equal to

cos((pi)/(14))+cos((3 pi)/(14))+cos((5 pi)/(14))=k cot((pi)/(14)) then k is equal to

int_((5)/(2))^(5)(sqrt((25-x^(2))^(3)))/(x^(4))dx is equal to (a) (pi)/(6)(b)(2 pi)/(3)(5 pi)/(6) (d) (pi)/(3)

The numerical value of tan((pi)/(3))+2tan((2 pi)/(3))+4tan((4 pi)/(3))+8tan((8 pi)/(3)) is equal to (A)-5sqrt(3)(B)-(5)/(sqrt(3))(C)5sqrt(3)(D)(5)/(sqrt(3))