Home
Class 14
MATHS
(1)/(sqrt(9)-sqrt(8))-(1)/(sqrt(8)-sqrt(...

`(1)/(sqrt(9)-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-sqrt(4))=?`

A

0

B

1

C

`1/3`

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\sqrt{9} - \sqrt{8}} - \frac{1}{\sqrt{8} - \sqrt{7}} + \frac{1}{\sqrt{7} - \sqrt{6}} - \frac{1}{\sqrt{6} - \sqrt{5}} + \frac{1}{\sqrt{5} - \sqrt{4}}, \] we will rationalize each term. ### Step 1: Rationalize the first term \(\frac{1}{\sqrt{9} - \sqrt{8}}\) To rationalize, multiply the numerator and denominator by \(\sqrt{9} + \sqrt{8}\): \[ \frac{1}{\sqrt{9} - \sqrt{8}} \cdot \frac{\sqrt{9} + \sqrt{8}}{\sqrt{9} + \sqrt{8}} = \frac{\sqrt{9} + \sqrt{8}}{(\sqrt{9})^2 - (\sqrt{8})^2} = \frac{\sqrt{9} + \sqrt{8}}{9 - 8} = \sqrt{9} + \sqrt{8} = 3 + \sqrt{8}. \] ### Step 2: Rationalize the second term \(-\frac{1}{\sqrt{8} - \sqrt{7}}\) Multiply the numerator and denominator by \(\sqrt{8} + \sqrt{7}\): \[ -\frac{1}{\sqrt{8} - \sqrt{7}} \cdot \frac{\sqrt{8} + \sqrt{7}}{\sqrt{8} + \sqrt{7}} = -\frac{\sqrt{8} + \sqrt{7}}{(\sqrt{8})^2 - (\sqrt{7})^2} = -\frac{\sqrt{8} + \sqrt{7}}{8 - 7} = -(\sqrt{8} + \sqrt{7}). \] ### Step 3: Rationalize the third term \(+\frac{1}{\sqrt{7} - \sqrt{6}}\) Multiply the numerator and denominator by \(\sqrt{7} + \sqrt{6}\): \[ \frac{1}{\sqrt{7} - \sqrt{6}} \cdot \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} + \sqrt{6}} = \frac{\sqrt{7} + \sqrt{6}}{(\sqrt{7})^2 - (\sqrt{6})^2} = \frac{\sqrt{7} + \sqrt{6}}{7 - 6} = \sqrt{7} + \sqrt{6}. \] ### Step 4: Rationalize the fourth term \(-\frac{1}{\sqrt{6} - \sqrt{5}}\) Multiply the numerator and denominator by \(\sqrt{6} + \sqrt{5}\): \[ -\frac{1}{\sqrt{6} - \sqrt{5}} \cdot \frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} + \sqrt{5}} = -\frac{\sqrt{6} + \sqrt{5}}{(\sqrt{6})^2 - (\sqrt{5})^2} = -\frac{\sqrt{6} + \sqrt{5}}{6 - 5} = -(\sqrt{6} + \sqrt{5}). \] ### Step 5: Rationalize the fifth term \(+\frac{1}{\sqrt{5} - \sqrt{4}}\) Multiply the numerator and denominator by \(\sqrt{5} + \sqrt{4}\): \[ \frac{1}{\sqrt{5} - \sqrt{4}} \cdot \frac{\sqrt{5} + \sqrt{4}}{\sqrt{5} + \sqrt{4}} = \frac{\sqrt{5} + \sqrt{4}}{(\sqrt{5})^2 - (\sqrt{4})^2} = \frac{\sqrt{5} + \sqrt{4}}{5 - 4} = \sqrt{5} + \sqrt{4}. \] ### Step 6: Combine all terms Now we combine all the rationalized terms: \[ (3 + \sqrt{8}) - (\sqrt{8} + \sqrt{7}) + (\sqrt{7} + \sqrt{6}) - (\sqrt{6} + \sqrt{5}) + (\sqrt{5} + 2). \] Notice that \(\sqrt{8}\) cancels with \(-\sqrt{8}\), \(\sqrt{7}\) cancels with \(-\sqrt{7}\), and \(\sqrt{6}\) cancels with \(-\sqrt{6}\). Thus, we are left with: \[ 3 + 2 = 5. \] ### Final Answer The value of the expression is \[ \boxed{5}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE EXERCISE O BASE LEVEL QUESTIONS|54 Videos
  • SPEED, TIME AND DISTANCE

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|16 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos

Similar Questions

Explore conceptually related problems

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7))-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

Knowledge Check

  • Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

    A
    `T lt 1`
    B
    `T = 1`
    C
    `1 lt T lt 2`
    D
    `T lt 2`
  • Similar Questions

    Explore conceptually related problems

    (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

    (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=

    (1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

    (1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7)))

    ( Show that: )/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

    (2)/(sqrt(5)+sqrt(3))-(3)/(sqrt(6)+sqrt(3))+(1)/(sqrt(6)+sqrt(5))=?

    Find the value of the expression: 1/(3-sqrt(8)) - 1/(sqrt(8)-sqrt(7)) + 1/(sqrt(7)-sqrt(6)) - 1/(sqrt(6)-sqrt(5)) +1/(sqrt(5) - sqrt(4))