Home
Class 12
MATHS
It the eccentricity of the hyerbola x^...

It the eccentricity of the hyerbola
`x^(2)-y^(2)cos ce^(2) alpha = 25` is `sqrt5` time the eccentricity of the ellipse `x^(2)cos ce^(2) alpha + y^(2) = 5`, then `alpha` is equal to :

A

`tan^(-1) sqrt2`

B

`sin^(-1)sqrt(3/4)`

C

`tan^(-1)sqrt(2/5)`

D

`sin^(-1)sqrt(2/5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of angle \( \alpha \) given the relationship between the eccentricities of a hyperbola and an ellipse. Let's break down the solution step by step. ### Step 1: Identify the equations of the conics The hyperbola is given by: \[ x^2 - y^2 \cos^2 \alpha = 25 \] We can rewrite this in standard form: \[ \frac{x^2}{25} - \frac{y^2}{25 \sin^2 \alpha} = 1 \] The ellipse is given by: \[ x^2 \cos^2 \alpha + y^2 = 5 \] We can rewrite this in standard form: \[ \frac{x^2}{5 \sin^2 \alpha} + \frac{y^2}{5} = 1 \] ### Step 2: Determine \( a^2 \) and \( b^2 \) for the hyperbola From the hyperbola equation, we have: - \( a^2 = 25 \) so \( a = 5 \) - \( b^2 = 25 \sin^2 \alpha \) so \( b = 5 \sin \alpha \) ### Step 3: Calculate the eccentricity of the hyperbola The eccentricity \( e_h \) of the hyperbola is given by: \[ e_h = \frac{c}{a} \] where \( c = \sqrt{a^2 + b^2} \). Calculating \( c \): \[ c = \sqrt{25 + 25 \sin^2 \alpha} = 5 \sqrt{1 + \sin^2 \alpha} \] Thus, the eccentricity becomes: \[ e_h = \frac{5 \sqrt{1 + \sin^2 \alpha}}{5} = \sqrt{1 + \sin^2 \alpha} \] ### Step 4: Determine \( a^2 \) and \( b^2 \) for the ellipse From the ellipse equation, we have: - \( a^2 = 5 \sin^2 \alpha \) so \( a = \sqrt{5} \) - \( b^2 = 5 \) so \( b = \sqrt{5} \) ### Step 5: Calculate the eccentricity of the ellipse The eccentricity \( e_e \) of the ellipse is given by: \[ e_e = \frac{c}{a} \] where \( c = \sqrt{a^2 - b^2} \). Calculating \( c \): \[ c = \sqrt{5 - 5 \sin^2 \alpha} = \sqrt{5(1 - \sin^2 \alpha)} = \sqrt{5 \cos^2 \alpha} = \sqrt{5} \cos \alpha \] Thus, the eccentricity becomes: \[ e_e = \frac{\sqrt{5} \cos \alpha}{\sqrt{5 \sin^2 \alpha}} = \frac{\cos \alpha}{\sin \alpha} = \cot \alpha \] ### Step 6: Set up the relationship between the eccentricities According to the problem, the eccentricity of the hyperbola is \( \sqrt{5} \) times the eccentricity of the ellipse: \[ \sqrt{1 + \sin^2 \alpha = \sqrt{5} \cdot \cot \alpha} \] ### Step 7: Square both sides to eliminate the square root Squaring both sides gives: \[ 1 + \sin^2 \alpha = 5 \cdot \cot^2 \alpha \] Using \( \cot^2 \alpha = \frac{\cos^2 \alpha}{\sin^2 \alpha} \): \[ 1 + \sin^2 \alpha = 5 \cdot \frac{\cos^2 \alpha}{\sin^2 \alpha} \] ### Step 8: Substitute \( \cos^2 \alpha = 1 - \sin^2 \alpha \) Substituting \( \cos^2 \alpha \): \[ 1 + \sin^2 \alpha = 5 \cdot \frac{1 - \sin^2 \alpha}{\sin^2 \alpha} \] Multiplying through by \( \sin^2 \alpha \): \[ \sin^2 \alpha + \sin^4 \alpha = 5(1 - \sin^2 \alpha) \] Rearranging gives: \[ \sin^4 \alpha + 6 \sin^2 \alpha - 5 = 0 \] ### Step 9: Let \( x = \sin^2 \alpha \) This leads to a quadratic equation: \[ x^2 + 6x - 5 = 0 \] Using the quadratic formula: \[ x = \frac{-6 \pm \sqrt{36 + 20}}{2} = \frac{-6 \pm \sqrt{56}}{2} = \frac{-6 \pm 2\sqrt{14}}{2} = -3 \pm \sqrt{14} \] ### Step 10: Find \( \sin^2 \alpha \) Since \( \sin^2 \alpha \) must be non-negative: \[ \sin^2 \alpha = -3 + \sqrt{14} \] ### Step 11: Find \( \alpha \) Finally, we can find \( \alpha \) using: \[ \alpha = \sin^{-1}(\sqrt{-3 + \sqrt{14}}) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise : -1 Concept Builder (Topicwise 8)|6 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise : -1 Concept Builder (Topicwise -6)|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Suppose 0lt thetalt(pi)/(2) if the eccentricity of the hyperbola x^(2)-y^(2) cosec^(2) theta=5 is sqrt(7) times the eccentricity of the ellipse x^(2) cosec^(2) theta+y^(2)=5 then theta is equal to ________

If the eccentricity of the hyperbola x^(2)-y^(2)(sec)alpha=5 is sqrt(3) xx the eccentricity of the ellipse x^(2)(sec)^(2)alpha+y^(2)=25, then a value of alpha is : (a) (pi)/(6) (b) (pi)/(4) (c) (pi)/(3) (d) (pi)/(2)

Knowledge Check

  • If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)alpha=5 is sqrt3 times the eccentricity of the ellipse x^(2)sec^(2)alpha+y^(2)=25 , then tan^(2)alpha is equal to

    A
    2
    B
    1
    C
    3
    D
    `(1)/(2)`
  • If the eccentricity of the hyperbola x^(2) - y^(2) sec^(2)theta = 4 is sqrt3 time the eccentricity of the ellipse x^(2)sec^(2)theta+y^(2) = 16 , then the volue of theta equal

    A
    `pi/6`
    B
    `(3pi)/4`
    C
    `pi/3`
    D
    `pi/2`
  • If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)theta=4 is sqrt3 times the eccentricity of the ellipse x^(2)sec^(2)theta+y^(2)=16 , then the value of theta equals

    A
    `pi//6`
    B
    `3pi//4`
    C
    `pi//3`
    D
    `pi//2`
  • Similar Questions

    Explore conceptually related problems

    If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)alpha=5 is sqrt(3) xx the eccentricity the ellipse x^(2)sec^(2)alpha+y^(2)=25 then alpha=(pi)/(6) b.(pi)/(4) c.(pi)/(3) d.(pi)/(2)

    For some theta in(0,(pi)/(2)) ,if the eccentric of the hyperbola x^(2)-y^(2)sec^(2)theta=10 is sqrt(5) times the eccentricity of the ellipse, x^(2)sec^(2)theta+y^(2)=5 ,then the length of the latus rectum of the ellipse

    Eccentricity of the ellipse x^2/25+y^2/9=1 is

    Let theta in (0,pi//2) . If the eccentricity of the hyperbola x^(2) cos^(2) theta - y^(2) = 6 cos^(2) theta is sqrt(3) times the eccentricity of the ellipse x^(2) + y^(2) cos^(2) theta= 3 theta cos^(2)theta then theta is equal to

    Find the eccentricity of the ellipse (x^2)/(4) = (y^2)/( 25)=1 .