Home
Class 12
MATHS
Prove that (i) [hat(i)hat(j)hat(k)]=[h...

Prove that
(i) `[hat(i)hat(j)hat(k)]=[hat(j)hat(k)hat(i)]=[hat(k)hat(j)hat(i)]=1`
(ii)`[hat(i)hat(k)hat(j)]=[hat(k)hat(j)hat(i)]=[hat(j)hat(i)hat(k)]=1`

Answer

Step by step text solution for Prove that (i) [hat(i)hat(j)hat(k)]=[hat(j)hat(k)hat(i)]=[hat(k)hat(j)hat(i)]=1 (ii)[hat(i)hat(k)hat(j)]=[hat(k)hat(j)hat(i)]=[hat(j)hat(i)hat(k)]=1 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Exercise 25B|32 Videos
  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Objective Questions|34 Videos
  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Objective Questions|34 Videos
  • PROBABILITY DISTRIBUTION

    RS AGGARWAL|Exercise Exercise 32|32 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos

Similar Questions

Explore conceptually related problems

Prove that [hat(i)hat(j)hat(k)]=1, and [hat(i)hat(k)hat(j)]=-1 .

(hat(k)xx hat(j)).hat(i)+hat(j).hat(k)= ………….

Knowledge Check

  • [[hat(i), hat(j), hat(k)]]+[[hat(k), hat(j), hat(i)]]+[[hat(j), hatk, hat(i)]]=

    A
    `1`
    B
    `3`
    C
    `-3`
    D
    `-1`
  • hat(i)*(hat(j)timeshat(k))+hat(j)*(hat(k)timeshat(i))+hat(k)*(hat(i)timeshat(j))=

    A
    `0`
    B
    `1`
    C
    `2`
    D
    `3`
  • If a=hat(i)+hat(j)+hat(k) and b=hat(i)-hat(j) , then the vectors (a*hat(i))hat(i)+(a*hat(j))hat(j)+(a*hat(k))hat(k), (b*hat(i))hat(i)+(b*hat(j))hat(j)+(b*hat(k))hat(k) and hat(i)+hat(j)-2hat(k)

    A
    are mutually perpendicular
    B
    are coplanar
    C
    form a parallepiped of volume 3 units
    D
    form a parallelopiped of volume 6 units
  • Similar Questions

    Explore conceptually related problems

    Find the value of : (i) (hat(i) xxhat(j))*hat (k) + hat(i)* hat(j) (ii) (hat(k) xx hat(j))* hat(i) +hat(j)* hat(k) hat(i) xx (hat(j) + hat(k) )+hat(j) xx(hat(k) +hat(i))+ hat(k) xx (hat(i)+hat(j))

    Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+hat(k).(hat(i)xxhat(j)) .

    Find the volume of the parallelepiped whose coterminous edges are represented by the vectors (i) vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(i)-hat(j)+hat(k), vec(c)=hat(i)+2hat(j)-hat(k) (ii) vec(a)=-3hat(i)+7hat(j)+5hat(k), vec(b)=-5hat(i)+7hat(j)-3hat(k), vec(c)= 7 hat(i)-5hat(j)-3hat(k) (iii) vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=2hat(i)+hat(j)-hat(k), vec(c)=hat(j)+hat(k) (iv) vec(a)=6hat(i), vec(b)=2hat(j), vec(c)=5hat(i)

    (hat i xxhat j)*hat k+(hat j+hat k)*hat j

    (vec(a).hat(i))hat(i)+(vec(a).hat(j))hat(j)+(vec(a).hat(k))hat(k)=