Home
Class 12
MATHS
Find the volume of the parallelepiped wh...

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors
(i) `vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(i)-hat(j)+hat(k), vec(c)=hat(i)+2hat(j)-hat(k)`
(ii) `vec(a)=-3hat(i)+7hat(j)+5hat(k), vec(b)=-5hat(i)+7hat(j)-3hat(k), vec(c)= 7 hat(i)-5hat(j)-3hat(k)`
(iii)`vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=2hat(i)+hat(j)-hat(k), vec(c)=hat(j)+hat(k)`
(iv) `vec(a)=6hat(i), vec(b)=2hat(j), vec(c)=5hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), we can use the formula: \[ \text{Volume} = |\vec{a} \cdot (\vec{b} \times \vec{c})| \] This can also be computed using the determinant of a 3x3 matrix formed by the vectors. Let's solve each part step by step. ### Part (i) Given vectors: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k}, \quad \vec{b} = \hat{i} - \hat{j} + \hat{k}, \quad \vec{c} = \hat{i} + 2\hat{j} - \hat{k} \] 1. **Set up the determinant:** \[ V = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix} \] 2. **Calculate the determinant:** \[ V = 1 \begin{vmatrix} -1 & 1 \\ 2 & -1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} + 1 \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} \] - First determinant: \[ (-1)(-1) - (1)(2) = 1 - 2 = -1 \] - Second determinant: \[ (1)(-1) - (1)(1) = -1 - 1 = -2 \] - Third determinant: \[ (1)(2) - (-1)(1) = 2 + 1 = 3 \] Putting it all together: \[ V = 1(-1) - 1(-2) + 1(3) = -1 + 2 + 3 = 4 \] 3. **Final volume:** \[ \text{Volume} = |4| = 4 \text{ cubic units} \] ### Part (ii) Given vectors: \[ \vec{a} = -3\hat{i} + 7\hat{j} + 5\hat{k}, \quad \vec{b} = -5\hat{i} + 7\hat{j} - 3\hat{k}, \quad \vec{c} = 7\hat{i} - 5\hat{j} - 3\hat{k} \] 1. **Set up the determinant:** \[ V = \begin{vmatrix} -3 & 7 & 5 \\ -5 & 7 & -3 \\ 7 & -5 & -3 \end{vmatrix} \] 2. **Calculate the determinant:** Using the same method as above, we compute the determinant step by step. After calculating, we find: \[ V = 264 \] 3. **Final volume:** \[ \text{Volume} = |264| = 264 \text{ cubic units} \] ### Part (iii) Given vectors: \[ \vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \quad \vec{b} = 2\hat{i} + \hat{j} - \hat{k}, \quad \vec{c} = \hat{j} + \hat{k} \] 1. **Set up the determinant:** \[ V = \begin{vmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} \] 2. **Calculate the determinant:** After computing, we find: \[ V = 12 \] 3. **Final volume:** \[ \text{Volume} = |12| = 12 \text{ cubic units} \] ### Part (iv) Given vectors: \[ \vec{a} = 6\hat{i}, \quad \vec{b} = 2\hat{j}, \quad \vec{c} = 5\hat{k} \] 1. **Set up the determinant:** \[ V = \begin{vmatrix} 6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{vmatrix} \] 2. **Calculate the determinant:** \[ V = 6 \cdot 2 \cdot 5 = 60 \] 3. **Final volume:** \[ \text{Volume} = |60| = 60 \text{ cubic units} \] ### Summary of Volumes: 1. Part (i): 4 cubic units 2. Part (ii): 264 cubic units 3. Part (iii): 12 cubic units 4. Part (iv): 60 cubic units
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Exercise 25B|32 Videos
  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Objective Questions|34 Videos
  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Objective Questions|34 Videos
  • PROBABILITY DISTRIBUTION

    RS AGGARWAL|Exercise Exercise 32|32 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos

Similar Questions

Explore conceptually related problems

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)-hat(j)+2hat(k) and vec(c)=2hat(i)+hat(j)-hat(k) .

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=hat i+hat j+hat k,vec b=hat i-hat j+hat k,vec c=hat i+2hat j-hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i+3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j+2hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i-3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j-2hat k

Find [vec(a)vec(b)vec(c)] , when (i) vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j)+2hat(k) (ii) vec(a)=2hat(i)-3hat(j)+4hat(k), vec(b)=hat(i)+2hat(j)-hat(k) and vec(c)=3hat(i)-hat(j)+2hat(k) (iii) vec(a) = 2 hat(i)-3hat(j), vec(b)=hat(i)+hat(j)-hat(k) and vec(c)=3hat(i)-hat(k)

Find the sum of the vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) , and vec(c )=hat(i)-6hat(j)-7hat(k) .

If vec(a)=2hat(i)+hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k) , and vec(c)=-3hat(i)+hat(j)+2hat(k) , find [hat(a)hat(b)hat(c)] .

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) vec(a)=hat(i)-2hat(j)+3hat(k), vec(b) = -2hat(i)+3hat(j)-4hat(k) and vec(c)=hat(i)-3hat(j)+5hat(k) (ii) vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k)and vec(c)=7hat(j)+3hat(k) (iii) vec(a)=2hat(i)-hat(j)+2hat(k), vec(b)=hat(i)+2hat(j)-3hat(k) and vec(c)=3hat(i)-4hat(j)+7hat(k)