Home
Class 11
MATHS
Find the domain of the following real fu...

Find the domain of the following real functions:
(i) `f(x)=(3x+5)/(x^(2)-9)` (ii) `f(x)=(2x-3)/(x^(2)+x-2)`
(iii) `f(x)=(x^(2)-2x+1)/(x^(2)-8x+12)` (iv) `f(x)=(x^(3)-8)/(x^(2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the given functions, we need to identify the values of \( x \) for which the denominator is not equal to zero, since division by zero is undefined. Let's solve each function step by step. ### (i) \( f(x) = \frac{3x + 5}{x^2 - 9} \) 1. **Identify the denominator**: The denominator is \( x^2 - 9 \). 2. **Set the denominator to zero**: \[ x^2 - 9 = 0 \] 3. **Solve for \( x \)**: \[ x^2 = 9 \implies x = 3 \text{ or } x = -3 \] 4. **Determine the domain**: The function is defined for all real numbers except \( x = 3 \) and \( x = -3 \). \[ \text{Domain} = \mathbb{R} \setminus \{3, -3\} \] ### (ii) \( f(x) = \frac{2x - 3}{x^2 + x - 2} \) 1. **Identify the denominator**: The denominator is \( x^2 + x - 2 \). 2. **Set the denominator to zero**: \[ x^2 + x - 2 = 0 \] 3. **Factor the quadratic**: \[ (x - 1)(x + 2) = 0 \] 4. **Solve for \( x \)**: \[ x = 1 \text{ or } x = -2 \] 5. **Determine the domain**: The function is defined for all real numbers except \( x = 1 \) and \( x = -2 \). \[ \text{Domain} = \mathbb{R} \setminus \{1, -2\} \] ### (iii) \( f(x) = \frac{x^2 - 2x + 1}{x^2 - 8x + 12} \) 1. **Identify the denominator**: The denominator is \( x^2 - 8x + 12 \). 2. **Set the denominator to zero**: \[ x^2 - 8x + 12 = 0 \] 3. **Factor the quadratic**: \[ (x - 6)(x - 2) = 0 \] 4. **Solve for \( x \)**: \[ x = 6 \text{ or } x = 2 \] 5. **Determine the domain**: The function is defined for all real numbers except \( x = 6 \) and \( x = 2 \). \[ \text{Domain} = \mathbb{R} \setminus \{6, 2\} \] ### (iv) \( f(x) = \frac{x^3 - 8}{x^2 - 1} \) 1. **Identify the denominator**: The denominator is \( x^2 - 1 \). 2. **Set the denominator to zero**: \[ x^2 - 1 = 0 \] 3. **Factor the quadratic**: \[ (x - 1)(x + 1) = 0 \] 4. **Solve for \( x \)**: \[ x = 1 \text{ or } x = -1 \] 5. **Determine the domain**: The function is defined for all real numbers except \( x = 1 \) and \( x = -1 \). \[ \text{Domain} = \mathbb{R} \setminus \{1, -1\} \] ### Summary of Domains - (i) \( \text{Domain} = \mathbb{R} \setminus \{3, -3\} \) - (ii) \( \text{Domain} = \mathbb{R} \setminus \{1, -2\} \) - (iii) \( \text{Domain} = \mathbb{R} \setminus \{6, 2\} \) - (iv) \( \text{Domain} = \mathbb{R} \setminus \{1, -1\} \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    RS AGGARWAL|Exercise EXERCISE 3D|4 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise EXERCISE 3E|5 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise EXERCISE 3B|8 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos
  • GEOMETRICAL PROGRESSION

    RS AGGARWAL|Exercise EXERCISE 12H (Very Short Answer Type Questions)|13 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the following functions :(i)f(x)=sqrt(2x1)+sqrt(3-2x)

Find the domain of each of the following functions: f(x)=(x^(3)-5x+3)/(x^(2)-1)

Find the domain and range of the following real functions: ( )f(x)=-|x|( ii) f(x)=sqrt(9-x^(2))

Find the the domain of following functions: (i) f(x)=sqrt(x^(2)-5) (ii) sin(x^(3)-x)

Find the domain of each of the following real valued function: f(x)=(x^2+3x+5)/(x^2-5x+4)

Find the domain of each of the following real valued function: f(x)=(2x-3)/(x^2-3x+2)

Find the domain of the following functions.(i) f(x)=(x^(2)+2x+1)/(x^(2)-8x+12) (ii) (x)/(sqrt(x^(2)-3x+2)) (iii) (x^(2)+3x+5)/(x^(2)-5x+4) (iv) sqrt(x-1)(3-x)

Find the domain of the real-valued function: f(x)=(x^(2)-x+1)/(x^(2)-5x+4) .

Find the domain of the following functions (a) f(x)=(1)/(sqrt(x-2)) " (b) " f(x)=(1)/(x^(3)-x) (c ) f(x)= root(3)(x^(2)-2)

Find the domain and range of the following functions. (i) f(x)=sqrt(2x-3) " (ii) " f(x) =(1)/(x-2) (iii) f(x) =x^(2) +3 " (iv) " f(x)=(1)/(x^(2)+2)