Home
Class 11
MATHS
Let H(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1...

Let `H_(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n)`, then the sum to n terms of the series
`(1^(2))/(1^(3))+(1^(2)+2^(2))/(1^(3)+2^(3))+(1^(2)+2^(2)+3^(2))/(1^(3)+2^(3)+3^(3))+ . . . `, is

A

`(4)/(3)H_(n)-1`

B

`(4)/(3)H_(n)+(1)/(n)`

C

`(4)/(3)H_(n)`

D

`(4)/(3)H_(n)-(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum to n terms of the series given by: \[ S_n = \frac{1^2}{1^3} + \frac{1^2 + 2^2}{1^3 + 2^3} + \frac{1^2 + 2^2 + 3^2}{1^3 + 2^3 + 3^3} + \ldots \] ### Step 1: Identify the nth term of the series The nth term \( T_n \) can be expressed as: \[ T_n = \frac{1^2 + 2^2 + \ldots + n^2}{1^3 + 2^3 + \ldots + n^3} \] ### Step 2: Use the formulas for the sums of squares and cubes We know the formulas for the sums of squares and cubes: - The sum of the first n squares is given by: \[ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \] - The sum of the first n cubes is given by: \[ \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2 \] ### Step 3: Substitute the formulas into the nth term Substituting these formulas into \( T_n \): \[ T_n = \frac{\frac{n(n+1)(2n+1)}{6}}{\left(\frac{n(n+1)}{2}\right)^2} \] ### Step 4: Simplify the nth term Now, simplify \( T_n \): \[ T_n = \frac{n(n+1)(2n+1)/6}{(n(n+1)/2)^2} \] This simplifies to: \[ T_n = \frac{n(n+1)(2n+1)}{6} \cdot \frac{4}{n^2(n+1)^2} \] Cancelling \( n(n+1) \): \[ T_n = \frac{4(2n+1)}{6n(n+1)} = \frac{2(2n+1)}{3n(n+1)} \] ### Step 5: Find the sum \( S_n \) Now, we need to find the sum \( S_n = \sum_{k=1}^{n} T_k \): \[ S_n = \sum_{k=1}^{n} \frac{2(2k+1)}{3k(k+1)} \] ### Step 6: Split the summation We can split the fraction: \[ S_n = \frac{2}{3} \sum_{k=1}^{n} \left( \frac{2}{k} - \frac{2}{k+1} \right) \] ### Step 7: Evaluate the telescoping series This is a telescoping series: \[ S_n = \frac{2}{3} \left( 2 \sum_{k=1}^{n} \frac{1}{k} - 2 \sum_{k=1}^{n} \frac{1}{k+1} \right) \] The second sum can be rewritten: \[ S_n = \frac{2}{3} \left( 2H_n - 2(H_n - 1) \right) = \frac{2}{3} \left( 2H_n - 2H_n + 2 \right) = \frac{2}{3} \cdot 2 = \frac{4}{3} \] ### Final Answer Thus, the sum to n terms of the series is: \[ \boxed{\frac{4}{3}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA|Exercise Exercise|129 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The sum to n term of the series 1(1!)+2(2!)+3(3!)+

The sum to n term of the series 1(1!)+2(2!)+3(3!)+

Knowledge Check

  • Sum to n terms of the series 1^(3) - (1.5)^(3) +2^(3)-(2.5)^(3) +…. is

    A
    `1/6 (n+1)^(2)(n+2)^(2)-1/4`
    B
    `1/32 (n+1)^(2) (n+2)^(2) -1/8`
    C
    `(n+1)^(2)(n+2)^(2)-35`
    D
    none of these
  • The sum to n terms of the series (n^(2)-1^(2))+2(n^(2)-2^(2))+3(n^(2)-3^(2))+ . . . . , is

    A
    `(n^(2))/(4)(n^(2)-1)`
    B
    `(n)/(4)(n+1)^(2)`
    C
    0
    D
    `2n(n^(2)-1)`
  • The sum to n terms of the series 1^2+(1^2+3^2)+(1^2+3^2+5^2)+ .......is

    A
    `1/3 (n^4+2n^2)`
    B
    `1/3 (n^3+3n^2-n)`
    C
    `1/6 n(n+1)(2n^2+2n-1)`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    Find the sum to n terms of the series 1^(2)/(1)+(1^(2)+2^(2))/(1+2)+(1^(2)+2^(2)+3^(2))/(1+2+3)+cdots

    The sum to n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+--

    The sum to n term of the series 1(1!)+2(2!)+3(3!)+...

    Find the sum to n terms of the series: (1)/(1+1^(2)+1^(4))+(2)/(1+2^(2)+2^(4))+(3)/(1+3^(2)+3^(4))+

    Find the sum to n terms of the series + (1+2) + (1+2+3) + (1+2+ 3+ 4) + ….: