Home
Class 11
MATHS
If x^((3)/(2)("log"(2) x-3)) = (1)/(8), ...

If `x^((3)/(2)("log"_(2) x-3)) = (1)/(8)`, then x equals to

A

2

B

3

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^{\frac{3}{2}(\log_2 x - 3)} = \frac{1}{8} \), we will follow these steps: ### Step 1: Rewrite the right-hand side We know that \( \frac{1}{8} \) can be expressed as \( 2^{-3} \): \[ x^{\frac{3}{2}(\log_2 x - 3)} = 2^{-3} \] ### Step 2: Take logarithm on both sides Taking logarithm base 2 on both sides: \[ \log_2\left(x^{\frac{3}{2}(\log_2 x - 3)}\right) = \log_2(2^{-3}) \] ### Step 3: Apply the logarithm power rule Using the power rule of logarithms, we can simplify the left-hand side: \[ \frac{3}{2}(\log_2 x - 3) \cdot \log_2 x = -3 \] ### Step 4: Distribute and simplify Expanding the left-hand side: \[ \frac{3}{2}(\log_2^2 x - 3\log_2 x) = -3 \] Multiplying through by \( \frac{2}{3} \) to eliminate the fraction: \[ \log_2^2 x - 3\log_2 x = -2 \] ### Step 5: Rearrange into standard quadratic form Rearranging gives us: \[ \log_2^2 x - 3\log_2 x + 2 = 0 \] ### Step 6: Factor the quadratic equation Factoring the quadratic: \[ (\log_2 x - 1)(\log_2 x - 2) = 0 \] ### Step 7: Solve for \( \log_2 x \) Setting each factor to zero gives us two possible solutions: 1. \( \log_2 x - 1 = 0 \) → \( \log_2 x = 1 \) → \( x = 2^1 = 2 \) 2. \( \log_2 x - 2 = 0 \) → \( \log_2 x = 2 \) → \( x = 2^2 = 4 \) ### Step 8: Conclusion The possible values for \( x \) are \( 2 \) and \( 4 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Exercise|67 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 3^(log_(2)x)=4^(log_(2)x-1) then x is equal to

log_(sqrt(2))sqrt(x)+log_(2)x log_(4)(x^(2))+log_(8)(x^(3))+log_(16)(x^(4))=40 then x is equal to

Knowledge Check

  • If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

    A
    5
    B
    4
    C
    3
    D
    2
  • If "log"_(x+2) (x^(3)-3x^(2)-6x +8) =3 , then x equals to

    A
    1
    B
    2
    C
    3
    D
    none of these
  • If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

    A
    `(y)/(125)`
    B
    `(y)/(25)`
    C
    `(y^(2))/(25)`
    D
    `3-(y^(2))/(25)`
  • Similar Questions

    Explore conceptually related problems

    If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

    If y = 2^(1//"log"_(x)8) , then x equal to

    If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

    If log_(9)x +log_(4)y = (7)/(2) and log_(9) x - log_(8)y =- (3)/(2) , then x +y equals

    If 3^(x+1)=6^(log_(2)3) , then x is equal to