Home
Class 11
MATHS
If x^((3)/(2)("log"(2) x-3)) = (1)/(8), ...

If `x^((3)/(2)("log"_(2) x-3)) = (1)/(8)`, then x equals to

A

2

B

3

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^{\frac{3}{2}(\log_2 x - 3)} = \frac{1}{8} \), we will follow these steps: ### Step 1: Rewrite the right-hand side We know that \( \frac{1}{8} \) can be expressed as \( 2^{-3} \): \[ x^{\frac{3}{2}(\log_2 x - 3)} = 2^{-3} \] ### Step 2: Take logarithm on both sides Taking logarithm base 2 on both sides: \[ \log_2\left(x^{\frac{3}{2}(\log_2 x - 3)}\right) = \log_2(2^{-3}) \] ### Step 3: Apply the logarithm power rule Using the power rule of logarithms, we can simplify the left-hand side: \[ \frac{3}{2}(\log_2 x - 3) \cdot \log_2 x = -3 \] ### Step 4: Distribute and simplify Expanding the left-hand side: \[ \frac{3}{2}(\log_2^2 x - 3\log_2 x) = -3 \] Multiplying through by \( \frac{2}{3} \) to eliminate the fraction: \[ \log_2^2 x - 3\log_2 x = -2 \] ### Step 5: Rearrange into standard quadratic form Rearranging gives us: \[ \log_2^2 x - 3\log_2 x + 2 = 0 \] ### Step 6: Factor the quadratic equation Factoring the quadratic: \[ (\log_2 x - 1)(\log_2 x - 2) = 0 \] ### Step 7: Solve for \( \log_2 x \) Setting each factor to zero gives us two possible solutions: 1. \( \log_2 x - 1 = 0 \) → \( \log_2 x = 1 \) → \( x = 2^1 = 2 \) 2. \( \log_2 x - 2 = 0 \) → \( \log_2 x = 2 \) → \( x = 2^2 = 4 \) ### Step 8: Conclusion The possible values for \( x \) are \( 2 \) and \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Exercise|67 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If "log"_(x+2) (x^(3)-3x^(2)-6x +8) =3 , then x equals to

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

If y = 2^(1//"log"_(x)8) , then x equal to

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

If 3^(log_(2)x)=4^(log_(2)x-1) then x is equal to

If 3^(x+1)=6^(log_(2)3) , then x is equal to

log_(sqrt(2))sqrt(x)+log_(2)x log_(4)(x^(2))+log_(8)(x^(3))+log_(16)(x^(4))=40 then x is equal to

OBJECTIVE RD SHARMA-LOGARITHMS-Chapter Test
  1. If x^((3)/(2)("log"(2) x-3)) = (1)/(8), then x equals to

    Text Solution

    |

  2. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  3. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  4. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  5. If "log"(7){"log"(5)(sqrt(x+5) + sqrt(x))}=0 then x =

    Text Solution

    |

  6. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  7. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  8. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  9. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  10. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  11. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  12. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  13. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  14. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  15. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  16. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  17. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  18. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  19. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  20. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |