Home
Class 12
MATHS
If y=(log(cosx)sinx)(log(sinx)cosx)+"sin...

If `y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2))`,
then `(dy)/(dx)` at `x=(pi)/(2)` is equal to

A

`(8)/(pi^(2)+4)`

B

0

C

`(-8)/(pi+4)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) for the function \[ y = \left(\log_{\cos x} \sin x\right) \left(\log_{\sin x} \cos x\right) + \frac{\sin^{-1}(2x)}{1 + x^2}, \] we will differentiate \(y\) with respect to \(x\) and then evaluate it at \(x = \frac{\pi}{2}\). ### Step 1: Differentiate the first term The first term is \[ \log_{\cos x} \sin x \cdot \log_{\sin x} \cos x. \] Using the change of base formula, we can rewrite these logarithms: \[ \log_{\cos x} \sin x = \frac{\log \sin x}{\log \cos x}, \quad \log_{\sin x} \cos x = \frac{\log \cos x}{\log \sin x}. \] Thus, \[ y_1 = \frac{\log \sin x}{\log \cos x} \cdot \frac{\log \cos x}{\log \sin x} = 1. \] Since this is a constant, its derivative is zero: \[ \frac{d}{dx}(y_1) = 0. \] ### Step 2: Differentiate the second term The second term is \[ y_2 = \frac{\sin^{-1}(2x)}{1 + x^2}. \] Using the quotient rule, we have: \[ \frac{dy_2}{dx} = \frac{(1 + x^2) \cdot \frac{d}{dx}(\sin^{-1}(2x)) - \sin^{-1}(2x) \cdot \frac{d}{dx}(1 + x^2)}{(1 + x^2)^2}. \] Now we need to compute \(\frac{d}{dx}(\sin^{-1}(2x))\): \[ \frac{d}{dx}(\sin^{-1}(2x)) = \frac{2}{\sqrt{1 - (2x)^2}} = \frac{2}{\sqrt{1 - 4x^2}}. \] And \[ \frac{d}{dx}(1 + x^2) = 2x. \] Substituting these into the derivative of \(y_2\): \[ \frac{dy_2}{dx} = \frac{(1 + x^2) \cdot \frac{2}{\sqrt{1 - 4x^2}} - \sin^{-1}(2x) \cdot 2x}{(1 + x^2)^2}. \] ### Step 3: Evaluate at \(x = \frac{\pi}{2}\) Now we need to evaluate \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\): 1. For \(y_1\), since it is constant, \(\frac{dy_1}{dx} = 0\). 2. For \(y_2\): - At \(x = \frac{\pi}{2}\), \(2x = \pi\), and \(\sin^{-1}(\pi)\) is undefined, but we will evaluate the limit as \(x\) approaches \(\frac{\pi}{2}\). - \(1 + \left(\frac{\pi}{2}\right)^2 = 1 + \frac{\pi^2}{4}\). - The term \(\sqrt{1 - 4\left(\frac{\pi}{2}\right)^2} = \sqrt{1 - \pi^2}\) is also undefined. Thus, we need to evaluate the limit of \(\frac{dy_2}{dx}\) as \(x\) approaches \(\frac{\pi}{2}\). ### Final Result Since both terms become undefined at \(x = \frac{\pi}{2}\), we conclude that: \[ \frac{dy}{dx} \text{ at } x = \frac{\pi}{2} \text{ is undefined.} \]

To find \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) for the function \[ y = \left(\log_{\cos x} \sin x\right) \left(\log_{\sin x} \cos x\right) + \frac{\sin^{-1}(2x)}{1 + x^2}, \] we will differentiate \(y\) with respect to \(x\) and then evaluate it at \(x = \frac{\pi}{2}\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Exercise|60 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If y={log_(cos x)sin x}{log_(sin x)cos x)^(-1)+sin^(-1)((2x)/(1+x^(2))) find (dy)/(dx) at x=(pi)/(4)

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y=log(sinx-cosx) , then (dy)/(dx) at x=(pi)/(2) is :

Find the derivative with respect to x of ((log)_(cosx)sinx)((log)_(sinx)cosx)^(-1)+sin^(-1)((2x)/(1+x^2)) at x=pi/4 .

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=|cosx|+|sinx| , then (dy)/(dx)" at "x=(2pi)/(3) is

If y=tan^(-1)((sinx+cosx)/(cosx-sinx))," then "(dy)/(dx)" at "x=(pi)/(4)

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y=(e^(2x)cosx)/(x sinx),then(dy)/(dx) =

OBJECTIVE RD SHARMA-DIFFERENTIATION-Section I - Solved Mcqs
  1. If f(x)=|log(e)|x||," then "f'(x) equals

    Text Solution

    |

  2. If f(x) is given by f(x)=(cosx+i sinx)(cos3x+isin3x)......... .......

    Text Solution

    |

  3. If y=(log(cosx)sinx)(log(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)), then...

    Text Solution

    |

  4. Let f(x) be a polynomial.Then, the second order derivative of f(e^x) i...

    Text Solution

    |

  5. Let f(x)=x^n n being a non negative integer. The value of n for which ...

    Text Solution

    |

  6. Letf(x)=sinx,g(x)=x^(2) and h(x)=log(e)x. If F(x)=("hog of ")(x)," t...

    Text Solution

    |

  7. If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the grea...

    Text Solution

    |

  8. If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)) then f'(1) equals

    Text Solution

    |

  9. The function u=e^x s in ; v=e^x cos x satisfy the equation v(d u)/(dx)...

    Text Solution

    |

  10. If f(x)=|x-2|" and "g(x)=f(f(x)), then for xgt20,g'(x) equals

    Text Solution

    |

  11. If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

    Text Solution

    |

  12. If f(x)=logx(lnx) then f'(x) at x=e is

    Text Solution

    |

  13. Let f(t)="ln"(t). Then, (d)/(dx)(int(x^(2))^(x^(3))f(t)" dt")

    Text Solution

    |

  14. If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)...

    Text Solution

    |

  15. If f(x)=|x|^(|sinx|), then f'((pi)/(4)) equals

    Text Solution

    |

  16. If y=(1+x)(1+x^2)(1+x^4)...(1+x^(2^n)) then (dy)/(dx) at x=0 is

    Text Solution

    |

  17. If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

    Text Solution

    |

  18. If f(x)=|cosx-sinx|, then f'(pi/2) is equal to

    Text Solution

    |

  19. If y=|x-x^(2)|, then (dy)/(dx)" at "x=1.

    Text Solution

    |

  20. If y=|cosx|+|sinx|, then (dy)/(dx)" at "x=(2pi)/(3) is

    Text Solution

    |