Home
Class 12
MATHS
If y=(log(cosx)sinx)(log(sinx)cosx)+"sin...

If `y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2))`,
then `(dy)/(dx)` at `x=(pi)/(2)` is equal to

A

`(8)/(pi^(2)+4)`

B

0

C

`(-8)/(pi+4)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) for the function \[ y = \left(\log_{\cos x} \sin x\right) \left(\log_{\sin x} \cos x\right) + \frac{\sin^{-1}(2x)}{1 + x^2}, \] we will differentiate \(y\) with respect to \(x\) and then evaluate it at \(x = \frac{\pi}{2}\). ### Step 1: Differentiate the first term The first term is \[ \log_{\cos x} \sin x \cdot \log_{\sin x} \cos x. \] Using the change of base formula, we can rewrite these logarithms: \[ \log_{\cos x} \sin x = \frac{\log \sin x}{\log \cos x}, \quad \log_{\sin x} \cos x = \frac{\log \cos x}{\log \sin x}. \] Thus, \[ y_1 = \frac{\log \sin x}{\log \cos x} \cdot \frac{\log \cos x}{\log \sin x} = 1. \] Since this is a constant, its derivative is zero: \[ \frac{d}{dx}(y_1) = 0. \] ### Step 2: Differentiate the second term The second term is \[ y_2 = \frac{\sin^{-1}(2x)}{1 + x^2}. \] Using the quotient rule, we have: \[ \frac{dy_2}{dx} = \frac{(1 + x^2) \cdot \frac{d}{dx}(\sin^{-1}(2x)) - \sin^{-1}(2x) \cdot \frac{d}{dx}(1 + x^2)}{(1 + x^2)^2}. \] Now we need to compute \(\frac{d}{dx}(\sin^{-1}(2x))\): \[ \frac{d}{dx}(\sin^{-1}(2x)) = \frac{2}{\sqrt{1 - (2x)^2}} = \frac{2}{\sqrt{1 - 4x^2}}. \] And \[ \frac{d}{dx}(1 + x^2) = 2x. \] Substituting these into the derivative of \(y_2\): \[ \frac{dy_2}{dx} = \frac{(1 + x^2) \cdot \frac{2}{\sqrt{1 - 4x^2}} - \sin^{-1}(2x) \cdot 2x}{(1 + x^2)^2}. \] ### Step 3: Evaluate at \(x = \frac{\pi}{2}\) Now we need to evaluate \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\): 1. For \(y_1\), since it is constant, \(\frac{dy_1}{dx} = 0\). 2. For \(y_2\): - At \(x = \frac{\pi}{2}\), \(2x = \pi\), and \(\sin^{-1}(\pi)\) is undefined, but we will evaluate the limit as \(x\) approaches \(\frac{\pi}{2}\). - \(1 + \left(\frac{\pi}{2}\right)^2 = 1 + \frac{\pi^2}{4}\). - The term \(\sqrt{1 - 4\left(\frac{\pi}{2}\right)^2} = \sqrt{1 - \pi^2}\) is also undefined. Thus, we need to evaluate the limit of \(\frac{dy_2}{dx}\) as \(x\) approaches \(\frac{\pi}{2}\). ### Final Result Since both terms become undefined at \(x = \frac{\pi}{2}\), we conclude that: \[ \frac{dy}{dx} \text{ at } x = \frac{\pi}{2} \text{ is undefined.} \]

To find \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) for the function \[ y = \left(\log_{\cos x} \sin x\right) \left(\log_{\sin x} \cos x\right) + \frac{\sin^{-1}(2x)}{1 + x^2}, \] we will differentiate \(y\) with respect to \(x\) and then evaluate it at \(x = \frac{\pi}{2}\). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Exercise|60 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If y={log_(cos x)sin x}{log_(sin x)cos x)^(-1)+sin^(-1)((2x)/(1+x^(2))) find (dy)/(dx) at x=(pi)/(4)

Find the derivative with respect to x of ((log)_(cosx)sinx)((log)_(sinx)cosx)^(-1)+sin^(-1)((2x)/(1+x^2)) at x=pi/4 .

Knowledge Check

  • If y=(log_(cosx)sinx)(log_(nx)cosx)+sin^(-1)""(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to:

    A
    `(8)/((4+pi^(2)))`
    B
    0
    C
    `-(8)/((4+pi^(2)))`
    D
    1
  • If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

    A
    `(4)/(log2)`
    B
    `-4log2`
    C
    `(-4)/(log2)`
    D
    None of these
  • If y=log(sinx-cosx) , then (dy)/(dx) at x=(pi)/(2) is :

    A
    0
    B
    1
    C
    `(1)/(2)`
    D
    `-2`
  • Similar Questions

    Explore conceptually related problems

    if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

    If y=|cosx|+|sinx| , then (dy)/(dx)" at "x=(2pi)/(3) is

    If y=tan^(-1)((sinx+cosx)/(cosx-sinx))," then "(dy)/(dx)" at "x=(pi)/(4)

    If y=log_(cosx)sinx, then (dy)/(dx) is equal to

    If y=(e^(2x)cosx)/(x sinx),then(dy)/(dx) =